精英家教网 > 高中数学 > 题目详情
14.如图,P是平面ABC外一点,PA=4,BC=2$\sqrt{5}$,D,E分别为PC和AB的中点,且DE=3.求异面直线PA和BC所成角的大小.

分析 取PB的中点M,连结DM和EM,求出∠DME=90°,由DM和ME分别是BC和AP的平行线,能求出PA和BC所成角.

解答 解:取PB的中点M,连结DM和EM
DM是△PBC的中位线,∴DM‖BC,且DM=$\frac{BC}{2}$=$\sqrt{5}$,
同理ME是△PAB的中位线,ME‖AP,ME=$\frac{AP}{2}$=2,DE=3,
在△DME中,DM2+ME2=9,DE2=9,∴∠DME=90°,
∵DM和ME分别是BC和AP的平行线,
∴它们二者的成角就是AP与BC的成角,
故PA和BC所成角是90°.

点评 本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设数列{an}满足a1=a,a2=b,2an+2=an+1+an
(1)设bn=an+1-an,证明:若a≠b,则{bn}是等比数列;
(2)若$\lim_{n→∞}({a_1}+{a_2}+…+{a_n})=4$,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设曲线y=ax2-lnx-a在点(1,0)处的切线方程为y=2(x-1),则a=(  )
A.0B.$\frac{1}{2}$C.1D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在($\sqrt{2}$+$\root{4}{3}$)60展开式中,有理项共有16项(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若x>y>0,则$\frac{y}{\sqrt{x}}$$-\sqrt{x}$与$\sqrt{y}$$-\frac{x}{\sqrt{y}}$的大小关系是$\frac{y}{\sqrt{x}}$$-\sqrt{x}$<$\sqrt{y}$$-\frac{x}{\sqrt{y}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.一动点到两定点A(0,$\frac{9}{4}$)、B(0,-$\frac{9}{4}$)的距离之和为$\frac{41}{2}$,则它的轨迹方程为$\frac{{x}^{2}}{\frac{1681}{16}}$+$\frac{{y}^{2}}{100}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,已知A=45°,B=30°,则a:b的值为(  )
A.$\sqrt{2}$:1B.1:$\sqrt{2}$C.$\sqrt{2}$:$\sqrt{3}$D.$\sqrt{3}$:$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=$\frac{cosx}{|sinx-2|-2}$是奇函数(填写奇偶性)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,AB=AA1=$\sqrt{2}$.平面OCB1的法向量$\overrightarrow{n}$=(x,y,z)为(  )
A.(0,1,1)B.(1,-1,1)C.(0,1,-1)D.(-1,-1,1)

查看答案和解析>>

同步练习册答案