精英家教网 > 高中数学 > 题目详情
20.已知在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA+acosB=0.
(1)求角B的大小;
(2)若b=2,求△ABC面积的最大值.

分析 (1)由bsinA+acosB=0及其正弦定理可得:sinBsinA+sinAcosB=0,sinA≠0,化简即可得出.
(2)由余弦定理,可得$4={a}^{2}+{c}^{2}-2accos\frac{3π}{4}$,再利用基本不等式的性质、三角形面积计算公式即可得出.

解答 解:(1)由bsinA+acosB=0及其正弦定理可得:sinBsinA+sinAcosB=0,sinA≠0,
∴sinB+cosB=0,即tanB=-1,
又0<B<π,∴B=$\frac{3π}{4}$.
(2)由余弦定理,可得$4={a}^{2}+{c}^{2}-2accos\frac{3π}{4}$=${a}^{2}+{c}^{2}+\sqrt{2}ac$≥2ac+$\sqrt{2}$ac,
∴ac≤$\frac{4}{2+\sqrt{2}}$=2(2-$\sqrt{2}$),当且仅当a=c时取等号.
∴S△ABC=$\frac{1}{2}ac$sinB≤$\frac{1}{2}×2(2-\sqrt{2})×\frac{\sqrt{2}}{2}$=$\sqrt{2}$-1,
故△ABC面积的最大值为:$\sqrt{2}$-1.

点评 本题考查了三角形面积计算公式、正弦定理、基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.如果执行下面的程序框图,那么输出的结果s为(  )
A.8B.48C.384D.384

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.证明:(1)求证:sinθ(1+tanθ)+cosθ•(1+$\frac{1}{tanθ}$)=$\frac{1}{sinθ}$+$\frac{1}{cosθ}$.$(2)证明:\frac{tanx×sinx}{tanx-sinx}=\frac{tanx+sinx}{tanx×sinx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在锐角△abc中,若a=$\sqrt{3}$,A=$\frac{π}{3}$.则b+c的取值范围$(\sqrt{3},2\sqrt{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\sqrt{3}$sin2x-2cos2x-a在区间[-$\frac{π}{12}$,$\frac{π}{2}$]上的最大值为2.
(1)求函数f(x)在区间[-$\frac{π}{12}$,$\frac{π}{2}$]上的值域;
(2)设$α,β∈({0,\frac{π}{2}}),f({\frac{1}{2}α+\frac{π}{12}})=\frac{10}{13},f({\frac{1}{2}β+\frac{π}{3}})=\frac{6}{5}$,求sin(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示,已知圆A的圆心在直线y=-2x上,且该圆存在两点关于直线x+y-1=0对称,又圆A与直线l1:x+2y+7=0相切,过点B(-2,0)的动直线l与圆A相交于M,N两点,Q是MN的中点,直线l与l1相交于点P.
(1)求圆A的方程;
(2)当$|{MN}|=2\sqrt{19}$时,求直线l的方程;
(3)($\overrightarrow{BM}$+$\overrightarrow{BN}$)•$\overrightarrow{BP}$是否为定值?如果是,求出其定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知M是关于x的不等式x2+(a-4)x-(a+1)(2a-3)<0的解集,且M中的一个元素是0,求实数a的取值范围,并用a表示出M.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{a}$-2$\overrightarrow{b}$|=1,则(2$\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$+2$\overrightarrow{b}$)=(  )
A.-1B.4C.9D.14

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.四棱锥P-ABCD的底面ABCD为正方形,PA⊥底面ABCD,AB=2,若该四棱锥的所有顶点都在表面积为16π的同一球面上,则PA=$2\sqrt{2}$.

查看答案和解析>>

同步练习册答案