精英家教网 > 高中数学 > 题目详情
6.已知直线AB过定点(1,0),倾斜角为α,曲线C:$\left\{{\begin{array}{l}{x=\frac{{\sqrt{6}}}{3}cosθ}\\{y=sinθ}\end{array}}$(θ为参数)
(1)求直线AB的参数方程;
(2)若直线AB与曲线C有公共点,求α的范围.

分析 (1)根据直线过定点求出直线方程即可;
(2)求出C的普通方程,将直线方程代入C,解出即可.

解答 解:(1)∵直线AB过定点(1,0),
故直线AB的参数方程是:$\left\{{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}}\right.(t为参数)$;
(2)∵C:$\left\{{\begin{array}{l}{x=\frac{{\sqrt{6}}}{3}cosθ}\\{y=sinθ}\end{array}}$(θ为参数),
∴曲线C:3x2+2y2=2代入得:
3(1+tcosα)2+2(tsinα)2=2,
即(cos2α+2)t2+6tcosα+1=0,
由△=36cos2α-4(cos2α+2)≥0,
解得${cos^2}α≥\frac{1}{4}即cosα≥\frac{1}{2}或cosα≤-\frac{1}{2}$,
又$α∈[{0,π})∴α∈[{0,\frac{π}{3}}]∪[{\frac{2π}{3},π})$.

点评 本题考查了求直线方程的参数式,考查参数方程和普通方程的转化以及三角函数问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow a=(sin\frac{ωx}{2},-sin\frac{ωx}{2}),\overrightarrow b=(cos\frac{ωx}{2},sin\frac{ωx}{2})(ω>0)$,函数$f(x)=\overrightarrow a•\overrightarrow b$,x1,x2是函数f(x)的任意两个相异零点,且|x1-x2|的最小值为$\frac{π}{2}$.
(Ⅰ)求ω的值;
(Ⅱ)若函数g(x)=f(x)-m在$(0,\frac{π}{2})$上无零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.不论k取何值,直线l:kx-y+1=3k恒过定点,此定点坐标为(3,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图所示).为了进一步分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样的方法抽出100人作进一步调查,则在[2000,2500]月收入段应抽出(  )
A.10人B.15人C.20人D.25人

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知某几何体的三视图如图所示,其体积为$\frac{20}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.不等式f(x)=ax2-x-c>0的解集为{x|-2<x<1},则a+c=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某车间分批生产某种产品,每批的生产准备费用为800元,若每批生产x件,则平均仓储时间为$\frac{x}{8}$天,且每件产品每天的仓储费用为1元,为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品多少件?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若向量$\overrightarrow a$=(ex,cosx),$\overrightarrow b$=(1,2sinx),则函数f(x)=$\overrightarrow a$•$\overrightarrow b$在区间[-2π,2π]上的零点个数为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知顶点在单位圆上的△ABC,角A,B,C所对的边分别是a,b,c,且2acosA=ccosB+bcosC.
(1)求cosA的值;
(2)若b≥a,求2b-c的取值范围.

查看答案和解析>>

同步练习册答案