精英家教网 > 高中数学 > 题目详情
13.焦点在y轴上,离心率为$\frac{\sqrt{6}}{3}$,一条准线是y=3的椭圆标准方程是(  )
A.$\frac{{x}^{2}}{6}$$+\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{4}$+y2=1C.$\frac{{x}^{2}}{2}$$+\frac{{y}^{2}}{6}$=1D.x2$+\frac{{y}^{2}}{4}$=1

分析 设椭圆方程为$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0),运用离心率公式和准线方程,结合a,b,c的关系,解方程可得a,b,进而得到椭圆方程.

解答 解:设椭圆方程为$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0),
由题意可得e=$\frac{c}{a}$=$\frac{\sqrt{6}}{3}$,$\frac{{a}^{2}}{c}$=3,
可得a=$\sqrt{6}$,c=2,b=$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{2}$,
即有椭圆方程为$\frac{{y}^{2}}{6}$+$\frac{{x}^{2}}{2}$=1.
故选:C.

点评 本题考查椭圆的方程的求法,注意运用离心率公式和准线方程,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知数列{an}满足a1=3,an=-an-1-2n+1,在a26,a27,a29,a29,a30中,最大的一项是(  )
A.a26B.a27C.a28D.a29
E.a30         

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.等差数列{an}的通项公式是an=2n+1,其前n项和为Sn,求数列{$\frac{{S}_{n}}{n}$}的前10项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知某等比数列的前10项之和为10,前30项之和为70,则该数列前20项的和为30.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=3sin($\frac{x}{4}$+$\frac{π}{6}$)(x∈R)的最小正周期(  )
A.B.C.D.π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.求由抛物线f(x)=x2,直线x=1以及x轴所围成的平面图形的面积时,若将区间[0,1]5等分,如图所示,以小区间中点的纵坐标为高,所有小矩形的面积之和为0.33.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.过双曲线的右焦点F作实轴所在直线的垂线,交双曲线于A,B两点,设双曲线的左顶点M,若△MAB是直角三角形,则此双曲线的离心率e的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow{a}$=(2cos2x,$\sqrt{3}$),$\overrightarrow{b}$=(1,sin2x),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)求函数f(x)(x∈R)的单调增区间;
(2)若f(α-$\frac{π}{3}$)=2,α∈[$\frac{π}{2}$,π],求sin(2α+$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知{an}为等差数列,若$\frac{{a}_{13}}{{a}_{12}}$<-1,且它的前n项和Sn有最大值,那么当Sn取得最小正值时,n的值为(  )
A.24B.23C.22D.11

查看答案和解析>>

同步练习册答案