精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x-1+
a
ex
(a∈R,e为自然对数的底数).
(1)若函数在点(0,f(0))处的切线垂直于y轴,求a的值;
(2)求函数f(x)的极值.
考点:利用导数求闭区间上函数的最值,利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:(1)由已知得f(x)=1-
a
ex
,由函数在点(0,f(0))处的切线垂直于y轴,得1-a=0,由此能求出a=1.
(2)当a≤0时,f′(x)>0,f(x)无极值;当a>0时,由f(x)=1-
a
ex
=0,得ex=a,x=lna,f(x)在x=lna处取到极小值,且极小值为f(lna)=lna,无极大值.
解答: 解:(1)∵f(x)=x-1+
a
ex

f(x)=1-
a
ex

∵函数在点(0,f(0))处的切线垂直于y轴,
∴1-a=0,解得a=1.
(2)①当a≤0时,f′(x)>0,
f(x)为(-∞,+∞)上的增函数,∴f(x)无极值;
②当a>0时,由f(x)=1-
a
ex
=0,得ex=a,x=lna,
x∈(-∞,lna),f′(x)<0,x∈(lna,+∞),f′(x)>0,
∴f(x)在∈(-∞,lna)上单调递减,在(lna,+∞)上单调递增,
故f(x)在x=lna处取到极小值,且极小值为f(lna)=lna,无极大值.
综上,当a≤0时,f(x)无极值;当a>0时,f(x)在x=lna处取到极小值lna,无极大值.
点评:本题考查导数的几何意义的应用,考查函数的极值的求法,解题时要认真审题,注意导数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个几何体的表面展开平面图如图.该几何体中与“祝”字面相对的是哪个面?与“你”字面相对的是哪个面?(  )
A、前;程B、你;前
C、似;锦D、程;锦

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=
1
2
,且前n项和Sn满足:Sn=n2an,求a2,a3,a4,猜想{an}的通项公式,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a
2
-
2x
2x+1
(a为常数)
(1)若y=f(x)为奇函数,求出a的值;
(2)在满足(1)的条件下,探索y=f(x)的单调性,并利用定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知焦点在x轴上的椭圆C过点(0,1),且c=
3
b,Q为椭圆C的左顶点.
(1)求椭圆C的标准方程;
(2)已知过点(-
6
5
,0)的直线l与椭圆C交于A,B两点.
(理)若直线l与x轴不垂直,是否存在直线l使得\Delta QAB为等腰三角形?如果存在,求出直线l的方程;如果不存在,请说明理由.
(文)若直线l垂直于x轴,求∠AQB的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(3,4),
b
=(5,12)
(1)求
a
b

(2)求|
a
|和|
b
|以及
a
b
所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
2
+alnx-2(a>0).
(Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=-x+2平行,求函数y=f(x)的极值;
(Ⅱ)若对于?x∈(0,+∞)都有f(x)>-2成立,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=(m2-2m-2)xm-1为偶函数,且在区间(0,+∞)上是单调递减函数,
(1)求函数f(x)的解析式;
(2)讨论函数F(x)=a
f(x)
-
b
xf(x)
的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,曲线C1:x2+y2=1,以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线l:3cosθ-2sinθ=
-8
ρ

(Ⅰ)将曲线C1上的所有点的横坐标、纵坐标分别伸长为原来的2倍、3倍后得到曲线C2,试写出直线l的直角坐标方程和曲线C2的参数方程;
(Ⅱ)求C2上一点P到l的距离的最大值.

查看答案和解析>>

同步练习册答案