精英家教网 > 高中数学 > 题目详情
3.知a1=1,a2=$\frac{1}{3}$,a3=$\frac{1}{6}$,a4=$\frac{1}{10}$,则数列{an}的一个通项公式an=(  )
A.$\frac{2}{(n+1)^{2}}$B.$\frac{2}{n(n+1)}$C.$\frac{2}{{2}^{n}-1}$D.$\frac{2}{2n-1}$

分析 观察规律即可得到答案.

解答 解:a1=1=$\frac{2}{2}$=$\frac{2}{1×2}$,a2=$\frac{1}{3}$=$\frac{2}{2×3}$,a3=$\frac{1}{6}$=$\frac{2}{12}$=$\frac{2}{3×4}$,a4=$\frac{1}{10}$=$\frac{2}{20}$=$\frac{2}{4×5}$,
则an=$\frac{2}{n(n+1)}$,
故选:B.

点评 本题考查了通过观察规律归纳,求数列的通项公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知x1=1-i(i为虚数单位)是关于x的实系数一元二次方程x2+ax+b=0的一个根,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知x,y满足$\left\{\begin{array}{l}{y≥2x}\\{2x+y≤4}\\{x≥m}\end{array}\right.$,目标函数z=x+y的最大值是最小值的3倍,则m=(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若复数z=$\frac{4+3i}{2-i}$,则复数z的虚部为2,复数$\overline{z}$•(2-i)的模为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设等差数列{an}的前n项和公式是Sn=5n2+3n,求
(1)a1,a2,a3;           
(2){an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求函数f(x)=2x3-6x2+3,x∈[-2,4]的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=3sin(2x+$\frac{π}{6}$).
(Ⅰ)求f(x)的单调递减区间;
(Ⅱ)求f(x)在区间[-$\frac{π}{2}$,-$\frac{π}{12}}$]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.将参加数学竞赛的1000名学生编号如下:0001,0002,003,…,1000,打算从中抽取一个容量为50的样本,按系统抽样的方法把编号分成50个部分,如果第一部分编号为0001,0002,0003,…,0020,第一部分随机抽取一个号码为0013,那么抽取的第40个号码为0793.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在三角形AB中,$\overrightarrow{AB}$-$\overrightarrow{BC}$-$\overrightarrow{CA}$=2$\overrightarrow{AB}$.

查看答案和解析>>

同步练习册答案