分析 (1)直接由数列的前n项和求得数列前3项;
(2)由an=Sn-Sn-1求得n≥2时的通项公式,验证首项后得答案.
解答 解:解:(1)由Sn=5n2+3n,得a1=S1=8,${a}_{2}={S}_{2}-{a}_{1}=5×{2}^{2}+3×2-8=18$,
${a}_{3}={S}_{3}-{S}_{2}=5×{3}^{2}+3×3-(5×{2}^{2}+3×2)$=54-26=28;
(2)当n≥2时,${a}_{n}={S}_{n}-{S}_{n-1}=5{n}^{2}+3n-[5(n-1)^{2}+3(n-1)]$=10n-2.
验证a1=8适合上式,
∴an=10n-2.
点评 本题考查数列递推式,训练了由数列的前n项和求数列的通项公式,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | 25° | B. | 115° | C. | 65° | D. | 155° |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{3}{2}$ | B. | $\frac{3}{2}$ | C. | 6 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若p∨q为真命题,则p∧q为真命题 | |
| B. | “a>0,b>0”是“$\frac{b}{a}$+$\frac{a}{b}$≥2”的充分必要条件 | |
| C. | 命题“若x2-3x+2=0,则x=1或x=2”的逆否命题为“若x≠1或x≠2,则x2-3x+2≠0” | |
| D. | 命题p:?x0∈R,使得x02+x0-1<0,则¬p:?x∈R,使得x2+x-1≥0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{(n+1)^{2}}$ | B. | $\frac{2}{n(n+1)}$ | C. | $\frac{2}{{2}^{n}-1}$ | D. | $\frac{2}{2n-1}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com