分析 (Ⅰ)利用正弦函数的单调性求得f(x)的单调递减区间;
(Ⅱ)利用正弦函数的定义域和值域,求得f(x)在区间[-$\frac{π}{2}$,-$\frac{π}{12}}$]上的最大值与最小值.
解答 解:(Ⅰ)对于函数f(x)=3sin(2x+$\frac{π}{6}$),
令2kπ+$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,求得kπ+$\frac{π}{6}$≤x≤kπ+$\frac{2π}{3}$,
可得函数的减区间为[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈Z.
(Ⅱ)在区间[-$\frac{π}{2}$,-$\frac{π}{12}}$]上,2x+$\frac{π}{6}$∈[-$\frac{5π}{6}$,0],
故当2x+$\frac{π}{6}$=-$\frac{π}{2}$时,函数f(x)取得最小值为-3;
当2x+$\frac{π}{6}$=0时,函数f(x)取得最大值为 0.
点评 本题主要考查正弦函数的单调性、定义域和值域,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | ①是系统抽样,②是简单随机抽样 | |
| B. | ①是简单随机抽样,②是简单随机抽样 | |
| C. | ①是简单随机抽样,②是系统抽样 | |
| D. | ①是系统抽样,②是系统抽样 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若p∨q为真命题,则p∧q为真命题 | |
| B. | “a>0,b>0”是“$\frac{b}{a}$+$\frac{a}{b}$≥2”的充分必要条件 | |
| C. | 命题“若x2-3x+2=0,则x=1或x=2”的逆否命题为“若x≠1或x≠2,则x2-3x+2≠0” | |
| D. | 命题p:?x0∈R,使得x02+x0-1<0,则¬p:?x∈R,使得x2+x-1≥0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{(n+1)^{2}}$ | B. | $\frac{2}{n(n+1)}$ | C. | $\frac{2}{{2}^{n}-1}$ | D. | $\frac{2}{2n-1}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2x+y-1=0 | B. | x-2y+7=0 | C. | x-2y-5=0 | D. | 2x+y-5=0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com