精英家教网 > 高中数学 > 题目详情
11.若复数z=$\frac{4+3i}{2-i}$,则复数z的虚部为2,复数$\overline{z}$•(2-i)的模为5.

分析 求出复数z,从而求出其虚部,通过计算化简$\overline{z}$•(2-i),求出其模即可.

解答 解:复数z=$\frac{4+3i}{2-i}$=$\frac{(4+3i)(2+i)}{(2-i)(2+i)}$=1+2i,
则z的虚部是2,
∵$\overline{z}$=1-2i,∴$\overline{z}$•(2-i)=(1-2i)(2-i)=-5i,
 故$\overline{z}$•(2-i)的模是5,
故答案为:2,5.

点评 本题考查了复数的运算,考查复数求模问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.不论a为何实数,直线(a+3)x+(2a-1)y+7=0恒过(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定积分$\int_0^1{(\sqrt{1-{x^2}}}+{x^2})$dx=(  )
A.$\frac{π}{2}+\frac{1}{3}$B.$\frac{π}{2}-\frac{1}{3}$C.$\frac{π}{4}+\frac{1}{3}$D.$\frac{π}{4}-\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设f(x)是以4为周期的函数,且当x∈[-2,2]时,f(x)=x,则f(7.6)=-0.4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列命题中正确的是((  )
A.若p∨q为真命题,则p∧q为真命题
B.“a>0,b>0”是“$\frac{b}{a}$+$\frac{a}{b}$≥2”的充分必要条件
C.命题“若x2-3x+2=0,则x=1或x=2”的逆否命题为“若x≠1或x≠2,则x2-3x+2≠0”
D.命题p:?x0∈R,使得x02+x0-1<0,则¬p:?x∈R,使得x2+x-1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.为了解某地区某种农产品的年产量x(单位:吨)对价格y(单位:千元/吨)和利润z的影响,对近五年该农产品的年产量和价格统计如表:
x12345
y76542
(1)求y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(2)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润z取到最大值?(保留两位小数)
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.知a1=1,a2=$\frac{1}{3}$,a3=$\frac{1}{6}$,a4=$\frac{1}{10}$,则数列{an}的一个通项公式an=(  )
A.$\frac{2}{(n+1)^{2}}$B.$\frac{2}{n(n+1)}$C.$\frac{2}{{2}^{n}-1}$D.$\frac{2}{2n-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.经过两条直线3x+y=0与x+3y-8=0的交点,且平行于直线x-2y+3=0的直线方程为(  )
A.2x+y-1=0B.x-2y+7=0C.x-2y-5=0D.2x+y-5=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,(x>0)}\\{{3}^{x},(x≤0)}\end{array}\right.$,则f[f($\frac{1}{4}$)]的值是$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案