精英家教网 > 高中数学 > 题目详情
3.已知等比数列{an}为递增数列,且$a_5^2={a_{10}}$,$2({a_n}+{a_{n+2}})=5{a_{n+1}},n∈{N^*}$.
(1)求数列{an}的通项公式;
(2)令${b_n}={(-1)^n}({a_n}+1)$,求数列{bn}的前n项和Sn

分析 (1)利用等比数列的通项公式、单调性即可得出.
(2)对n分类讨论,利用等比数列的求和公式即可得出.

解答 解:(1)设{an}的首项为a1,公比为q,
∴${({a_1}{q^4})^2}={a_1}{q^9}$,解得a1=q.
又∵2(an+an+2)=5an+1,∴$2({a_n}+{a_n}{q^2})=5{a_n}q$,∴2q2-5q+2=0,解得q=$\frac{1}{2}$,或q=2,
∵等比数列{an}为递增数列,∴取q=2,∴an=2n
(2)∵${b_n}={(-1)^n}({a_n}+1)$=(-1)n+(-2)n
n为偶数时,${S_n}=(-1+1-1+…-1+1)+\frac{{(-2)[1-{{(-2)}^n}]}}{1-(-2)}=\frac{{-2+{2^{n+1}}}}{3}$,
n为奇数时,${S_n}=(-1+1+…1-1)+\frac{{(-2)[1-{{(-2)}^n}]}}{1-(-2)}=-1-\frac{{{2^{n+1}}+2}}{3}=-\frac{{{2^{n+1}}+5}}{3}$,
∴${S_n}=\left\{{\begin{array}{l}{\frac{{{2^{n+1}}-2}}{3}(n为偶数)}\\{-\frac{{{2^{n+1}}+5}}{3}(n为奇数)}\end{array}}\right.$,
或${S_n}=\frac{{(-1)[1-{{(-1)}^n}]}}{1-(-1)}+\frac{{(-2)[1-{{(-2)}^n}]}}{1-(-2)}=\frac{{-1-{{(-1)}^{n+1}}}}{2}+\frac{{-2-{{(-2)}^{n+1}}}}{3}$=$-\frac{7}{6}+\frac{{{{(-1)}^n}}}{2}+\frac{{{{(-2)}^n}}}{3}$.

点评 本题考查了数列的递推关系、等比数列的通项公式与求和公式、单调性,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知直线l之方程为$\sqrt{3}$x+y+1=0,则直线的倾斜角为(  )
A.120°B.150°C.60°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列判断,正确的是(  )
A.平行于同一直线的两直线平行
B.垂直于同一直线的两直线平行
C.平行于同一平面的两平面不一定平行
D.垂直于同一平面的两平面平行

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.2015年12月7日,北京首次启动空气重污染红色预警.其应急措施包括:全市范围内将实施机动车单双号限行(即单日只有单号车可以上路行驶,双日只有双号车可以上路行驶),其中北京的公务用车在单双号行驶的基础上,再停驶车辆总数的30%.现某单位的公务车,职工的私家车数量如下表:
    公务车    私家车
   单号(辆)     10    135
   双号(辆)     20    120
根据应急措施,12月8日,这个单位需要停驶的公务车和私家车一共有154辆.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(Ⅰ)若α,β是锐角,且$α+β=\frac{π}{4}$,求(1+tanα)(1+tanβ)的值.
(Ⅱ)已知$\frac{π}{2}<β<α<\frac{3π}{4}$,且$cos({α-β})=\frac{12}{13}$,$sin({α+β})=-\frac{3}{5}$,求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a,b,c都是正整数,a+b+c=6,则a=1的概率为(  )
A.$\frac{1}{4}$B.$\frac{2}{5}$C.$\frac{1}{3}$D.$\frac{2}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知P(x,y)为圆x2+y2=1上的动点,则6x+8y的最大值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合P={4,5,6},Q={1,2,3},定义P⊕Q={x|x=p-q,p∈P,q∈Q},则集合P⊕Q的所有非空真子集的个数为(  )
A.32B.31C.30D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.实数x,y满足约束条件$\left\{\begin{array}{l}{x-3y+6≥0}\\{x-y≤0}\end{array}\right.$,当a>0,b>0时,z=ax+by的最大值为3,则$\frac{1}{a}$+$\frac{2}{b}$的最小值为(  )
A.5B.3+2$\sqrt{2}$C.3+$\sqrt{2}$D.2+2$\sqrt{2}$

查看答案和解析>>

同步练习册答案