精英家教网 > 高中数学 > 题目详情
4.把函数y=sin2x的图象沿着x轴向左平移$\frac{π}{6}$个单位,纵坐标伸长到原来的2倍(横坐标不变)后得到函数y=f(x)的图象,对于函数y=f(x)有以下四个判断:
(1)该函数的解析式为$y=2sin(2x+\frac{π}{6})$;
(2)该函数图象关于点$(\frac{π}{3},0)$对称;
(3)该函数在$[0,\frac{π}{6}]$上是增函数;
(4)若函数y=f(x)+a在$[0,\frac{π}{2}]$上的最小值为$\sqrt{3}$,则$a=2\sqrt{3}$
其中正确的判断有(  )
A.1个B.2个C.3个D.4个

分析 利用y=Asin(ωx+φ)的图象变换规律,求得f(x)的解析式,再利用正弦函数的图象和性质,的得出结论.

解答 解:把函数y=sin2x的图象沿着x轴向左平移$\frac{π}{6}$个单位,可得y=sin(2x+$\frac{π}{3}$)的图象;
再把纵坐标伸长到原来的2倍(横坐标不变)后得到函数y=f(x)=2sin(2x+$\frac{π}{3}$)的图象,
对于函数y=f(x)=2sin(2x+$\frac{π}{3}$),
故选项A不正确,故(1)错误;
由于当x=$\frac{π}{3}$时,f(x)=0,故该函数图象关于点$(\frac{π}{3},0)$对称,故(2)正确;
在$[0,\frac{π}{6}]$上,2x+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{2π}{3}$],故f(x)该函数在[0,$\frac{π}{2}$]上不是增函数,故(3)错误;
在$[0,\frac{π}{2}]$上,2x+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{4π}{3}$],故当2x+$\frac{π}{3}$=$\frac{4π}{3}$时,
f(x)+a该函数在$[0,\frac{π}{6}]$上取得最小值为-$\sqrt{3}$+a=$\sqrt{3}$,∴a=2$\sqrt{3}$,故(4)正确,
故选:B.

点评 本题主要考查y=Asin(ωx+φ)的图象变换规律,正弦函数的图象和性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知f(x)是定义在R上的函数,其导函数f'(x)满足f'(x)<f(x)(x∈R),则(  )
A.f(2)>e2f(0),f(2001)>e2001f(0)B.f(2)<e2f(0),f(2001)>e2001f(0)
C.f(2)>e2f(0),f(2001)<e2001f(0)D.f(2)<e2f(0),f(2001)<e2001f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”,已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,则该“堑堵”外接球的体积为$\frac{8\sqrt{2}π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,三内角A,B,C的对边分别为a,b,c.
(1)若c=$\sqrt{6},A={45°}$,a=2,求C,b;
(2)若a=btanA,且B为钝角,证明:B-A=$\frac{π}{2}$,并求sinA+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某几何体的三视图如图所示,则该几何体的体积等于(  )
A.8+8πB.8+6πC.6+8πD.6+6π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.二面角α-l-β为60°,异面直线a、b分别垂直于α、β,则a与b所成角的大小是60°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图是三角形ABC的直观图,△ABC平面图形是直角三角形(填正三角形、锐角三角形、钝角三角形、直角三角形或者等腰三角形)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cos B=bcos C.
(1)求角B的大小;
(2)若$a=c=\sqrt{3}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系中,直线l的参数方程为$\left\{\begin{array}{l}x=t+1\\ y=\sqrt{3}t+1\end{array}\right.$(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为3ρ2cos2θ+4ρ2sin2θ=12.
(Ⅰ)写出直线l的极坐标方程与曲线C的直角坐标方程;
(Ⅱ)已知与直线l平行的直线l'过点M(1,0),且与曲线C交于A,B两点,试求|AB|.

查看答案和解析>>

同步练习册答案