精英家教网 > 高中数学 > 题目详情
12.在△ABC中,三内角A,B,C的对边分别为a,b,c.
(1)若c=$\sqrt{6},A={45°}$,a=2,求C,b;
(2)若a=btanA,且B为钝角,证明:B-A=$\frac{π}{2}$,并求sinA+sinC的取值范围.

分析 (1)由正弦定理即可求出C的大小,再根据正弦定理和两角和的正弦公式即可求出b
(2)根据正弦定理、商的关系化简已知的式子,由条件和诱导公式求出B-A的值,求出C和A的范围,由诱导公式和二倍角的余弦公式变形化简,利用换元法和二次函数的性质求出式子的范围.

解答 解:(1)由正弦定理可得$\frac{c}{sinC}$=$\frac{a}{sinA}$,
∵c=$\sqrt{6},A={45°}$,a=2,
∴sinC=$\frac{\sqrt{6}×\frac{\sqrt{2}}{2}}{2}$=$\frac{\sqrt{3}}{2}$,
∴C=60°或120°,
由正弦定理可得b=$\frac{asinB}{sinA}$
当C=60°,sinB=sin(A+C)=sin45°cos60°+cos45°sin60°=$\frac{\sqrt{6}+\sqrt{2}}{4}$,
∴b=$\frac{2×\frac{\sqrt{6}+\sqrt{2}}{4}}{\frac{\sqrt{2}}{2}}$=1+$\sqrt{3}$,
当C=120°,sinB=sin(A+C)=sin45°cos120°+cos45°sin120°=$\frac{\sqrt{6}-\sqrt{2}}{4}$,
∴b=$\sqrt{3}$-1,
(2)由题意得a=btanA,
∴由正弦定理得sinA=sinB•$\frac{sinA}{cosA}$,则sinB=cosA,
∵B为钝角,∴B=$\frac{π}{2}$+A,
∴B-A=$\frac{π}{2}$;
∴C=π-(A+B)=π-(A+$\frac{π}{2}$+A)=$\frac{π}{2}$-2A>0,
∴A∈(0,$\frac{π}{4}$),
∴sinA+sinC=sinA+sin($\frac{π}{2}$-2A)
=sinA+cos2A=sinA+1-2sin2A
=-2(sinA-$\frac{1}{4}$)2+$\frac{9}{8}$,
∵A∈(0,$\frac{π}{4}$),∴0<sinA<$\frac{\sqrt{2}}{2}$,
∴由二次函数可知,$\frac{\sqrt{2}}{2}$<-2(sinA-$\frac{1}{4}$)2+$\frac{9}{8}$≤$\frac{9}{8}$,
∴sinA+sinC的取值范围为($\frac{\sqrt{2}}{2}$,$\frac{9}{8}$]

点评 本题考查三角函数中恒等变换的应用,正弦定理,以及换元法和二次函数的性质,熟练掌握公式和定理是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.与空间四边形ABCD四个顶点距离相等的平面共有(  )
A.7个B.6个C.5个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.血药浓度(Plasma Concentration)是指药物吸收后在血浆内的总浓度.药物在人体内发挥治疗作用时,该药物的血药浓度应介于最低有效浓度和最低中毒浓度之间.已知成人单次服用1单位某药物后,体内血药浓度及相关信息如图所示:

根据图中提供的信息,下列关于成人使用该药物的说法中,不正确的是(  )
A.首次服用该药物1单位约10分钟后,药物发挥治疗作用
B.每次服用该药物1单位,两次服药间隔小于2小时,一定会产生药物中毒
C.每间隔5.5小时服用该药物1单位,可使药物持续发挥治疗作用
D.首次服用该药物1单位3小时后,再次服用该药物1单位,不会发生药物中毒

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,网格纸的小正方形的边长是1,粗线表示一正方体被某平面截得的几何体的三视图,则该几何体的体积为(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.一汽车销售公司对开业5年来某种型号的汽车“五一”优惠金额与销售量之间的关系进行分析研究并做了记录,得到如下资料.
日期第1年第2年第3年第4年第5年
优惠金额x(千元)101113128
销售量y(辆)2325302616
该公司所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)若选取的是第1年与第5年的两组数据,请根据其余三年的数据,求出y关于x的线性回归方程$\hat y=\hat bx+\hat a$;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2辆,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?
相关公式:$\hat b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈.问积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,上棱长2丈,无宽,高1丈.现给出该楔体的三视图,其中网格纸上小正方形的边长为1丈,则该楔体的体积为(  )
A.4立方丈B.5立方丈C.6立方丈D.8立方丈

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.把函数y=sin2x的图象沿着x轴向左平移$\frac{π}{6}$个单位,纵坐标伸长到原来的2倍(横坐标不变)后得到函数y=f(x)的图象,对于函数y=f(x)有以下四个判断:
(1)该函数的解析式为$y=2sin(2x+\frac{π}{6})$;
(2)该函数图象关于点$(\frac{π}{3},0)$对称;
(3)该函数在$[0,\frac{π}{6}]$上是增函数;
(4)若函数y=f(x)+a在$[0,\frac{π}{2}]$上的最小值为$\sqrt{3}$,则$a=2\sqrt{3}$
其中正确的判断有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=3x-x2的零点所在区间是(  )
A.(1,2)B.(0,1)C.(-1,0)D.(-2,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{b}$=3,则$\overrightarrow{b}$与$\overrightarrow{a}$的夹角为$\frac{2π}{3}$.

查看答案和解析>>

同步练习册答案