精英家教网 > 高中数学 > 题目详情

【题目】对于一个具有正南正北、正东正西方向规则布局的城镇街道,从一点到另一点的距离是在南北方向上行进的距离加上在东西方向上行进的距离,这种距离即曼哈顿距离,也叫出租车距离”.对于平面直角坐标系中的点,两点间的曼哈顿距离.

1)如图,若为坐标原点,两点坐标分别为,求

2)若点满足,试在图中画出点的轨迹,并求该轨迹所围成图形的面积;

3)已知函数,试在图象上找一点,使得最小,并求出此时点的坐标.

【答案】15,5,4 2)图见解析,面积为50 3

【解析】

1)由题中新定义即可求解

2)设点坐标为,由新定义可得,即点的轨迹为正方形,从而可求得面积.

3)由新定义,利用函数的单调性即可求出最小值,进而求出点的坐标.

解:(1)由题得

2

点坐标为,因为点满足

点的轨迹为如图所示正方形(说明:画出图形即可,不用说明理由)

该正方形所围成图形的面积.

3)设点坐标为,则由题,因为

,任取,且

,且

上是减函数,

,即点的坐标为时,,即最小为4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为(-2,2),函数g(x)=f(x-1)+f(3-2x).

(1)求函数g(x)的定义域

(2)f(x)是奇函数且在定义域上单调递减求不等式g(x)0的解集

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,且保费与上一年度车辆发生道路交通事故的情况相联系.发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:

交强险浮动因素和费率浮动比率表

浮动因素

浮动比率

A1

上一个年度未发生有责任道路交通事故

下浮10%

A2

上两个年度未发生有责任道路交通事故

下浮20%

A3

上三个及以上年度未发生有责任道路交通事故

下浮30%

A4

上一个年度发生一次有责任不涉及死亡的道路交通事故

0%

A5

上一个年度发生两次及两次以上有责任道路交通事故

上浮10%

A6

上一个年度发生有责任道路交通死亡事故

上浮30%

某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:

类型

A1

A2

A3

A4

A5

A6

数量

10

5

5

20

15

5

(1)求一辆普通6座以下私家车在第四年续保时保费高于基本保费的频率;

(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损5 000元,一辆非事故车盈利10 000元.且各种投保类型的频率与上述机构调查的频率一致,完成下列问题:

①若该销售商店内有6辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选2辆车,求这2辆车恰好有一辆为事故车的概率;

②若该销售商一次购进120辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)判断的单调性,并说明理由;

2)判断的奇偶性,并用定义证明;

3)若不等式对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥底面上一点,且.

(1)求证:平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“荆、荆、襄、宜七校联考”正在如期开展,组委会为了解各所学校学生的学情,欲从四地选取200人作样本开展调研.若来自荆州地区的考生有1000人,荆门地区的考生有2000人,襄阳地区的考生有3000人,宜昌地区的考生有2000人.为保证调研结果相对准确,下列判断正确的有(  )

①用分层抽样的方法分别抽取荆州地区学生25人、荆门地区学生50人、襄阳地区学生75人、宜昌地区学生50人;

②可采用简单随机抽样的方法从所有考生中选出200人开展调研;

③宜昌地区学生小刘被选中的概率为

④襄阳地区学生小张被选中的概率为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某快餐代卖店代售多种类型的快餐,深受广大消费者喜爱.其中,种类型的快餐每份进价为元,并以每份元的价格销售.如果当天20:00之前卖不完,剩余的该种快餐每份以元的价格作特价处理,且全部售完.

(1)若该代卖店每天定制种类型快餐,求种类型快餐当天的利润(单位:元)关于当天需求量(单位:份,)的函数解析式;

(2)该代卖店记录了一个月天的种类型快餐日需求量(每天20:00之前销售数量)

日需求量

天数

(i)假设代卖店在这一个月内每天定制种类型快餐,求这一个月种类型快餐的日利润(单位:元)的平均数(精确到);

(ii)若代卖店每天定制种类型快餐,以天记录的日需求量的频率作为日需求量发生的概率,求种类型快餐当天的利润不少于元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产(千部)手机,需另投入成本万元,且 ,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.

)求出2020年的利润(万元)关于年产量(千部)的函数关系式,(利润=销售额—成本);

2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数fx)>0,对任意xyR都有fx+y)=fx fy)成立,且当x0时,fx)>1

1)求f0)的值;

2)求证fx)在R上是增函数;

3)若fk3xf3x9x2)<1对任意xR恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案