【题目】在①函数
的图象向右平移
个单位长度得到
的图象,
图象关于原点对称;②向量
,
;③函数![]()
这三个条件中任选一个,补充在下面问题中,并解答.已知_________,函数
的图象相邻两条对称轴之间的距离为
.
(1)若
且
,求
的值;
(2)求函数
在
上的单调递减区间.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
以坐标原点
为极点,以
轴正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线
的参数方程为
(
为参数),圆
的极坐标方程为
.
(1)求直线
的普通方程与圆
的直角坐标方程;
(2)设圆
与直线
交于
两点,若点
的直角坐标为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱锥
的四个顶点都在球
的表面上,
平面
,
,
,
,
,则:(1)球
的表面积为__________;(2)若
是
的中点,过点
作球
的截面,则截面面积的最小值是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班从4位男生和3位女生志愿者选出4人参加校运会的点名签到工作,则选出的志愿者中既有男生又有女生的概率的是__________.(结果用最简分数表示)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知焦点在x轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点
为圆心,1为半径的圆相切,又知C的一个焦点与P关于直线
对称.
(1)求双曲线C的方程;
(2)设直线
与双曲线C的左支交于A、B两点,另一直线
经过
及AB的中点,求直线
在y轴上的截距b的取值范围;
(3)若Q是双曲线C上的任一点,
、
为双曲线C的左、右两个焦点,从
引
的角平分线的垂线,垂足为N,试求点N的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了配合今年上海迪斯尼乐园工作,某单位设计了统计人数的数学模型
,以
表示第
个时刻进入园区的人数;以
表示第
个时刻离开园区的人数.设定以15分钟为一个计算单位,上午9点15分作为第1个计算人数单位,即
;9点30分作为第2个计算单位,即
;依次类推,把一天内从上午9点到晚上8点15分分成45个计算单位(最后结果四舍五入,精确到整数).
(1)试计算当天14点至15点这1小时内进入园区的游客人数
、离开园区的游客人数![]()
各为多少?
(2)从13点45分(即
)开始,有游客离开园区,请你求出这之后的园区内游客总人数最多的时刻,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
:
的准线经过点
.
(1)求抛物线
的方程;
(2)设
是原点,直线
恒过定点
,且与抛物线
交于
,
两点,直线
与直线
,
分别交于点
,
.请问:是否存在以
为直径的圆经过
轴上的两个定点?若存在,求出两个定点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com