分析 (Ⅰ)根据正弦定理、诱导公式、两角和的正弦函数化简已知的式子,由内角的范围和特殊角的三角函数值求出A;
(Ⅱ)由条件和余弦定理列出方程化简后,由不等式求出bc的范围,代入三角形的面积公式求出△ABC的面积的最大值.
解答 解:(Ⅰ)由题意知,c=acosB+bsinA,
由正弦定理得,sinC=sinAcosB+sinBsinA,
∵sin(A+B)=sin(π-C)=sinC,
∴sin(A+B)=sinAcosB+sinBsinA,
化简得,sinBcosA=sinBsinA,
∵sinB>0,∴cosA=sinA,则tanA=1,
由0<A<π得A=$\frac{π}{4}$;
(Ⅱ)∵a=2$\sqrt{2}$,A=$\frac{π}{4}$,∴由余弦定理得,
a2=b2+c2-2bccosA,则$8={b}^{2}+{c}^{2}-\sqrt{2}bc$,
即$8≥2bc-\sqrt{2}bc$,解得bc≤$4(2+\sqrt{2})$,当且仅当b=c时取等号,
∴△ABC的面积S=$\frac{1}{2}bcsinA=\frac{\sqrt{2}}{4}bc≤2\sqrt{2}+2$,
∴△ABC的面积的最大值是$2\sqrt{2}+2$.
点评 本题考查正弦定理、余弦定理,三角形的面积公式,诱导公式、两角和的正弦函数等,以及不等式在求出最值中的应用,考查化简、变形能力.
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | -2 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{10}}{10}$ | B. | $\frac{1}{5}$ | C. | $\frac{3\sqrt{10}}{10}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 0 | C. | -$\sqrt{3}$ | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com