精英家教网 > 高中数学 > 题目详情
4.已知$\overrightarrow{OA}$=(cos2x,-1),$\overrightarrow{OB}$=(1,sin2x+$\sqrt{3}$sin2x)(x∈R),若f(x)=$\overrightarrow{OA}$•$\overrightarrow{OB}$,则函数f(x)的最小值为(  )
A.-2B.0C.-$\sqrt{3}$D.-1

分析 运用向量数量积的坐标运算和二倍角的余弦公式,以及两角和的余弦公式,结合余弦函数的最值,即可得到所求最小值.

解答 解:由$\overrightarrow{OA}$=(cos2x,-1),$\overrightarrow{OB}$=(1,sin2x+$\sqrt{3}$sin2x)(x∈R),
则f(x)=$\overrightarrow{OA}$•$\overrightarrow{OB}$=cos2x-sin2x-$\sqrt{3}$sin2x
=cos2x-$\sqrt{3}$sin2x
=2($\frac{1}{2}$cos2x-$\frac{\sqrt{3}}{2}$sin2x)
=2cos(2x+$\frac{π}{3}$),
由x∈R,可得2x+$\frac{π}{3}$=2kπ+π,即x=kπ+$\frac{π}{3}$,k∈Z时,
f(x)取得最小值-2.
故选:A.

点评 本题考查向量的数量积的坐标运算,二倍角公式和两角和的余弦公式的运用,考查余弦函数的图象和性质,主要是最值的运用,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.执行如图程序语句,输入a=2cos$\frac{2017π}{3}$,b=2tan$\frac{2017π}{4}$,则输出y的值是(  )
A.3B.4C.6D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是76cm2,体积是40cm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,交A、B、C所对的边分别为a,b,c,且c=acosB+bsinA
(Ⅰ)求A;
(Ⅱ)若a=2$\sqrt{2}$,求△ABC的面积的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.“x≥1”是“lgx≥0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在三棱柱ABC-A1B1C1中,四边形AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求证:AA1⊥BC;
(Ⅱ)求平面CA1B1与平面A1B1C1的夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(1)证明:PB∥平面AEC;
(2)设AP=1,AD=$\sqrt{3}$,三棱锥P-ABD的体积V=$\frac{{\sqrt{3}}}{4}$,求二面角A-PB-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,矩形ABCD中,AB=2,AD=1,E,F分别是BC,CD中点,则$\overrightarrow{AE}$•$\overrightarrow{AF}$=(  )
A.$\frac{3}{2}$B.$\frac{{\sqrt{6}}}{4}$C.$\frac{5}{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知全集U={1,2,3,4},集合A={1,3,4},B={2,3},则A∩(∁UB)=(  )
A.{2}B.{1,4}C.{3}D.{1,2,3,4}

查看答案和解析>>

同步练习册答案