精英家教网 > 高中数学 > 题目详情
设抛物线y2=12x的焦点为F,经过点P(4,1)的直线l与抛物线相交于A、B两点,且点P恰为AB的中点,则|AF|+|BF|=
 
考点:抛物线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:设A(x1,y1),B(x2,y2),由抛物线的定义,得|AF|=x1+3,|BF|=x2+3.又根据中点坐标公式,可得x1+x2=8,代入即可得到|AF|+|BF|的值.
解答: 解:由题意可得F(3,0),
设A(x1,y1),B(x2,y2),抛物线的准线:x=-3,过A、B分别作准线的垂线,垂足分别为C、D,
根据抛物线的定义,得|AF|=|AC|=x1+3,|BF|=|BD|=x2+3,
故|AF|+|BF|=(x1+x2)+6
∵AB中点为P(4,1),
1
2
(x1+x2)=4,可得x1+x2=8
∴|AF|+|BF|=(x1+x2)+6=14
故答案为:14.
点评:本题给出抛物线的弦AB的中点坐标,求A、B两点到焦点距离之和,着重考查了抛物线的定义、标准方程和简单几何性质等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直线l:x-y+9=0上任取一点M,过M作以F1(-3,0),F2(3,0)为焦点的椭圆,当M在什么位置时,所作椭圆长轴最短?并求此椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定点F1(-1,0),F2(1,0),动点P(x,y),且满足|PF1|,|F1F2|,|PF2|成等差数列.
(Ⅰ) 求点P的轨迹C1的方程;
(Ⅱ) 若曲线C2的方程为(x-t)2+y2=(t2+2t)20<t≤
2
2
),过点A(-2,0)的直线l与曲线C2相切,求直线l被曲线C1截得的线段长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

4x+3y<12
x-y>-1
y≥0
表示的平面区域内整点的个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x,y满足|x|+|y|≤1,则x+2y的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知A(-1,0),B(0,1),则满足PA2-PB2=4且在圆x2+y2=4上的点P的个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若点M(3,m)在不等式组
x+y-2≥0
2x-y+2≥0
表示的平面区域内,则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出如下命题:
①若“p且q”为假命题,则p,q均为假命题;
②命题“若a>b,则2a>2b-1”的否命题为“若a≤b,则2a≤2b-1”;
③命题“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”;
④“a≥5”是“?x∈[1,2],x2-a≤0恒成立”的充要条件.
其中所有正确的命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列判断错误的是(  )
A、命题“?x∈R,2x>0”的否定是“?x0∈R,2x0≤0
B、命题“若xy=0,则x=0”的否命题为“若xy≠0,则x≠0”
C、函数y=2x-3+1的图象恒过定点A(3,2)
D、“sinα=
1
2
”是“α=
π
6
”的充分不必要条件

查看答案和解析>>

同步练习册答案