精英家教网 > 高中数学 > 题目详情
设变量x,y满足|x|+|y|≤1,则x+2y的取值范围为
 
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,设z=x+2y,利用数形结合即可得到结论.
解答: 解:作出不等式组对应的平面区域如图:
设z=x+2y得y=-
1
2
x+
z
2

平移直线y=-
1
2
x+
z
2
,由图象可知当直线y=-
1
2
x+
z
2
经过点B(0,1)时,
直线y=-
1
2
x+
z
2
的截距最大,此时z最大,zmax=0+2=2.
当直线y=-
1
2
x+
z
2
经过点A(0,-1)时,
直线y=-
1
2
x+
z
2
的截距最小,此时z最小,zmin=0-2=-2.
∴-2≤z≤2,
即x+2y的取值范围为[-2,2],
故答案为:[-2,2].
点评:本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
2
=1(a2>2)的右焦点F到直线x-y+2
2
=0的距离为3.
(1)椭圆C的方程;
(2)是否存在直线l:y=kx+1,使l与椭圆C交于两不同的点M、N,且|FM|=|FN|?若存在,求出k的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(x0,y0)是椭圆C:
x2
5
+y2=1
上的一点.F1、F2是椭圆C的左右焦点.
(1)若∠F1PF2是钝角,求点P横坐标x0的取值范围;
(2)求代数式
y
2
0
+2x0
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x,过点P(2,1)的直线l与抛物线交于两点A,B,且点P(2,1)为弦AB的中点.
(1)求直线l的方程;
(2)过点P(2,1)分别作斜率为k1,k2的两不同的直线l1,l2,若直线l1交抛物线于A1,B1,直线l2交抛物线于A2,B2,且
PA1
PB1
=
PA2
PB2
,求证:k1+k2的值为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式|x-4|+|x+4|≤m的解集为空集,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线y2=12x的焦点为F,经过点P(4,1)的直线l与抛物线相交于A、B两点,且点P恰为AB的中点,则|AF|+|BF|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2为椭圆
x2
9
+
y2
4
=1
的两个焦点,P为椭圆上一点,已知P、F1、F2是一个直角三角形的三个顶点,且|PF1|>|PF2|,则
|PF1|
|PF2|
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

直线2x-y+1=0的倾斜角为θ,则
1
sin2θ-cos2θ
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知i是虚数单位,则
3-i
1+i
=(  )
A、2+iB、2-i
C、1+2iD、1-2i

查看答案和解析>>

同步练习册答案