精英家教网 > 高中数学 > 题目详情
在正方体ABCD-A1B1C1D1中,与AA1平行的棱有
 
条.
考点:空间中直线与直线之间的位置关系
专题:空间位置关系与距离
分析:利用正方体的结构特征求解.
解答: 解:在正方体ABCD-A1B1C1D1中,与AA1平行的棱有
BB1,CC1,DD1,共3条.
故答案为:3.
点评:本题考查与正方体中一条棱平行的棱的条数的求法,是基础题,解题时要认真审题,注意正方体的结构特征的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD如图1所示,其三视图如图2所示,其中正视图和侧视图都是直角三角形,俯视图是矩形.
(Ⅰ)若E是PD的中点,求证:AE⊥平面PCD;
(Ⅱ)求此四棱锥的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,求证:
(1)B1D1∥平面BC1D;   
(2)A1C⊥B1D1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}前n项和为Sn,首项为a1,且1,an,Sn成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列满足bn=(log2an+1)(log2an+2),求证:
1
b1
+
1
b2
+
1
b3
+…+
1
bn
<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角三角形ABC中,∠A=90°,BC=a,若长为2a的线段PQ以点A为中点,问
PQ
BC
的夹角θ取何值时,
BP
CQ
的值最大?并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,不等式组
x+y-2≥0
x-y+2≥0
x≤2
表示的平面区域的面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设A,B是集合{a1,a2,a3,a4,a5}的两个不同子集,使得A不是B的子集,B也不是A的子集,求不同的有序集合对(A,B)的组数.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知以F1(-2,0),F2(2,0)为焦点的椭圆上有点Q,三角形QF1F2的周长为4(
2
+1).一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.
(1)求椭圆和双曲线的标准方程;
(2)设直线PF1、PF2的倾斜角分别为α,β,证明tanβ•tanα=1;
(3)设m=
1
|AB|
+
1
|CD|
,请问m是否为定值?若是,求出m的值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文科)已知集合A={x|x2+2x-3<0},B={x|(x+2)(x-3)<0},U=R求:
(1)A∩B;
(2)A∪B;
(3)A∩(∁UB)

查看答案和解析>>

同步练习册答案