精英家教网 > 高中数学 > 题目详情
6.若a>0,b>0且a+b=1,求a+b+$\frac{1}{2\sqrt{ab}}$的最小值,并指出等号成立条件.

分析 根据基本不等式的性质即可求出.

解答 解:∵a>0,b>0,
∴a+b+$\frac{1}{2\sqrt{ab}}$≥2$\sqrt{ab}$+$\frac{1}{2\sqrt{ab}}$≥2$\sqrt{2\sqrt{ab}•\frac{1}{2\sqrt{ab}}}$=2,当且仅当a=b=$\frac{1}{2}$时取等号,
故a+b+$\frac{1}{2\sqrt{ab}}$的最小值为2,当且仅当a=b=$\frac{1}{2}$时取等号.

点评 本题考查了不等式的基本性质,掌握等号成立的条件,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.在等差数列{an}中,a1>0,5a5=9a9,则当数列{an}的前n项和Sn取最大值时n的值等于(  )
A.12B.13C.14D.13或14

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若圆x2+y2-4x-4y-10=0上至少有三个不同的点,到直线l:y=x+b的距离为2$\sqrt{2}$,则b取值范围为(  )
A.(-2,2)B.[-2,2]C.[0,2]D.[-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x2+bx+c,集合 A={x|f(x)=x}.
(1)当b=-2,c=2时,求集合 A;
(2)当集合 A={1}时,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)为R上的奇函数,且x>0时f(x)=-x2+(a+2)x-a2+5(其中a为实常数).
(1)求f(0)的值;
(2)求x<0时f(x)的解析式;
(3)若f(x)在区间(0,2]上的最大值为2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={x|x2-1=0},集合B={x|x2-ax+1=0},若集合A与集合B的元素个数相同,则实数a的取值为(  )
A.a>2或a<-2B.a=2C.a=-2D.a=±2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知集合A={-1,1},B={x|mx=1},且A∪B=A,则实数m组成的集合子集的个数为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设f(x)=$\frac{{4}^{x}-1}{{2}^{x+1}}$-2x+1,当f(-m)=$\sqrt{2}$时,则f(m)=(  )
A.-$\sqrt{2}$B.2+$\sqrt{2}$C.2-$\sqrt{2}$D.1+$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.判断奇偶性:
(1)f(x)=x(x+2);
(2)f(x)=|x+1|+|x-1|.

查看答案和解析>>

同步练习册答案