精英家教网 > 高中数学 > 题目详情
8.已知i是虚数单位,a,b∈R,a+bi=$\frac{3-i}{1+i}$,则a+b等于-1.

分析 利用复数代数形式的乘除运算化简,再由复数相等的条件求得a,b的值,则答案可求.

解答 解:∵a+bi=$\frac{3-i}{1+i}$=$\frac{(3-i)(1-i)}{(1+i)(1-i)}=\frac{2-4i}{2}=1-2i$,
∴a=1,b=-2,则a+b=-1.
故答案为:-1.

点评 本题考查复数代数形式的乘除运算,考查了复数相等的条件,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.用四则运算法则验证下列导数公式:
(1)(cotx)′=-csc2x;
(2)(secx)′=secxtanx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.己知向量$\overrightarrow m=({\sqrt{3}sin\frac{x}{4},1}),\overrightarrow n=({cos\frac{x}{4},{{cos}^2}\frac{x}{4}})$,记.$f(x)=\overrightarrow m.\overrightarrow n$
(1)若$cos({\frac{2π}{3}-x})$=$-\frac{1}{2}$,求$f(x)=\overrightarrow m.\overrightarrow n$的值;
(2)在锐角△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=sin($\frac{π}{2}$-x)•($\sqrt{3}$sinx-cosx).
(1)求函数f(x)的单调递减区间;
(2)若f(θ-$\frac{π}{6}$)=$\frac{1}{10}$,求sinθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知直线l1:3x-4y+1=0,l2:3x-4y-1=0,则这两条直线间的距离为$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列等式一定成立的是(  )
A.$\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{BC}$B.$\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{BC}$C.$\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{CB}$D.$\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{CB}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A,B,C的对边分别是a,b,c,且满足a2+b2=2c2,sinAcosB=2cosAsinB.
(Ⅰ)求cosC的值;
(Ⅱ)若$c=\sqrt{6}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设向量$\overrightarrow{a}$和$\overrightarrow{b}$均为单位向量,且($\overrightarrow{a}$+$\overrightarrow{b}$)2=1,则$\overrightarrow{a}$与$\overrightarrow{b}$夹角为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=log3x+2,x∈(0,9]
(1)求函数g(x)=f(2sinx-1)+f(3$\sqrt{3}$tanx)的定义域.
(2)求函数h(x)=[f(x)]2+f(x2)的最小值及取最小值时对应的x值.

查看答案和解析>>

同步练习册答案