分析 (1)由Sn=3n+m,当n=1时,a1=3+m=2,解得m.当n≥2时,an=Sn-Sn-1可得an.
(2)由bn-an=n+6,(n∈N*),可得bn=2×3n-1+n+6,利用等差数列与等比数列的前n项和公式即可得出.
(3)cn=nan=2n•3n-1,利用“错位相减法”与等比数列的前n项和公式即可得出.
解答 解:(1)∵Sn=3n+m,∴当n=1时,a1=3+m=2,解得m=-1.
当n≥2时,an=Sn-Sn-1=3n-3n-1=2×3n-1,
当n=1时上式成立.
∴an=2×3n-1,m=-1.
(2)∵bn-an=n+6,(n∈N*),
∴bn=2×3n-1+n+6,
∴数列{bn}的前n项和Tn=$2×\frac{{3}^{n}-1}{3-1}$+$\frac{n(7+n+6)}{2}$
=3n-1+$\frac{1}{2}{n}^{2}$+$\frac{13}{2}n$.
(3)cn=nan=2n•3n-1,
∴数列{cn}的前n项和Pn=2(1+2×3+3×32+…+n•3n-1),
3Tn=2[3+2×32+3×33+…+(n-1)•3n-1+n•3n],
∴-2Pn=2(1+3+32+…+3n-1-n•3n)=2$(\frac{{3}^{n}-1}{3-1}-n•{3}^{n})$,
∴Pn=$\frac{(2n-1)•{3}^{n}+1}{2}$.
点评 本题考查了递推公式的应用、“错位相减法”、等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 0.750.2<1.21.3<1.21.4 | B. | 0.92<0.7-1.5<0.7-1.6 | ||
| C. | (-2.5)2<23.14<2x | D. | $(-8)^{-\frac{2}{3}}<0.{2}^{\frac{1}{2}}<0.{2}^{-\frac{1}{3}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | c<b<a | C. | c<a<b | D. | b<a<c |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com