精英家教网 > 高中数学 > 题目详情
8.试问函数f(x)=x+cosx是否为周期函数?请证明你的结论.

分析 假设f(x)为周期函数,周期为T,则f(x)=f(x+T)恒成立,令x=0和x=π,列出方程组解出T,得出矛盾即可证明f(x)不是周期函数.

解答 解:函数f(x)=x+cosx不是周期函数.
证明如下:(反证法)
假设函数f(x)的一个周期为T(T≠0),则有f(x+T)=f(x)成立,
即T+cos(x+T)=cosx对一切实数x均成立.
分别取x=0和x=π得:$\left\{\begin{array}{l}{T+cosT=1}\\{T-cosT=-1}\end{array}\right.$,
两式相加得2T=0,即T=0.与T≠0相矛盾.
所以假设不成立.
∴函数f(x)=x+cosx不是周期函数.

点评 本题考查了函数周期的定义,反证法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知$\overrightarrow{a}$=(0,-1),$\overrightarrow{b}$=(-1,2),则(2$\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{a}$=(  )
A.-1B.0C.1D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的两个焦点为F1,F2,焦距为2,设点P(a,b)满足△PF1F2是等腰三角形.
(1)求该椭圆方程;
(2)过x轴上的一点M(m,0)作一条斜率为k的直线l,与椭圆交于点A,B两点,问是否存在常数k,使得|MA|2+|MB|2的值与m无关?若存在,求出这个k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{3}$=1(a>0)的两条切线方程y=±$\frac{1}{2}$(x-4),切点分别为A、B,且切线与x轴的交点为T.
(1)求a的值;
(2)过T的直线l与椭圆C交于M,N两点,与AB交于点D,求证:$\frac{|TD|}{|TM|}$+$\frac{|TD|}{|TN|}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.幂函数y=xa在x=1处切线方程为y=-4x,则a的值为(  )
A.4B.-4C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知直线l过点P(2,3),根据下列条件分别求出直线l的方程:
(1)直线l的倾斜角为120°;
(2)l与直线x-2y+1=0垂直;
(3)l在x轴、y轴上的截距之和等于0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,四边形OQRP为矩形,其中P,Q分别是函数f(x)=$\sqrt{3}$sinwx(A>0,w>0)图象上的一个最高点和最低点,O为坐标原点,R为图象与x轴的交点.
(1)求f(x)的解析式
(2)对于x∈[0,3],方程f2(x)-af(x)+1=0恒有四个不同的实数根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=$\frac{3•{5}^{x}-5•{3}^{x}}{{5}^{x+1}+{3}^{x+1}}$的值域为(-$\frac{5}{3}$,$\frac{3}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若动点A(x1,y1),B(x2,y2)分别在直线l1:x+y-2=0和l2:x+y-6=0上移动,则AB中点M到原点距离的最小值为(  )
A.2$\sqrt{2}$B.2$\sqrt{3}$C.3$\sqrt{3}$D.4$\sqrt{2}$

查看答案和解析>>

同步练习册答案