精英家教网 > 高中数学 > 题目详情
18.已知集合A={0,1,2,3,4},B={m|m=2n,n∈A},M={x∈R|x>2},则集合B∩∁RM={0,2}.

分析 根据题意,分析可得集合B,由补集的定义可得∁RM,进而由交集的定义计算可得答案.

解答 解:根据题意,集合A={0,1,2,3,4},则B={m|m=2n,n∈A}={0,2,4,6,8},
而M={x∈R|x>2},则∁RM={x|x≤2},
故B∩∁RM={0,2};
故答案为:{0,2}.

点评 本题考查集合的交、补集的运算,关键是求出集合B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.如图所示,三个直角三角形是一个体积为20cm3的几何体的三视图,则该几何体外接球的表面积(单位:cm2)等于(  )
A.75πB.77πC.65πD.55π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将函数y=$\sqrt{3}$cosx+sinx(x∈R)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是(  )
A.$\frac{π}{3}$B.$\frac{π}{12}$C.$\frac{π}{6}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,直三棱柱ABC-A1B1C1中,AC=4,BC=3,AA1=4,AC⊥BC,点D在线段AB上.
(Ⅰ)证明AC⊥B1C;
(Ⅱ)若D是AB中点,证明AC1∥平面B1CD;
(Ⅲ)当$\frac{BD}{AB}$=$\frac{1}{3}$时,求二面角B-CD-B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.i为虚数单位,复数(1+i)2+$\frac{2}{1-i}$的共轭复数是(  )
A.1+3iB.-1+3iC.1-3iD.-1-3i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某校高二年级学生会有理科生4名,其中3名男同学;文科生3名,其中有1名男同学,从这7名成员中随机抽4人参加高中示范校验收活动问卷调查.
(Ⅰ)设A为事件“选出的4人中既有文科生又有理科生”,求事件A的概率;
(Ⅱ)设X为选出的4人中男生人数与女生人数差的绝对值,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设i为虚数单位,则$\frac{2+i}{1-i}$-(1-i)=$-\frac{1}{2}+\frac{5}{2}i$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.i+i2+i3+i4+i5=i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若互不相等的实数a、b、c成等差数列,且c,a,b成等比数列,a+3b+c=10,求a的值.

查看答案和解析>>

同步练习册答案