精英家教网 > 高中数学 > 题目详情
13.i为虚数单位,复数(1+i)2+$\frac{2}{1-i}$的共轭复数是(  )
A.1+3iB.-1+3iC.1-3iD.-1-3i

分析 直接利用复数代数形式的乘除运算化简求得z,再由共轭复数的概念得答案.

解答 解:∵(1+i)2+$\frac{2}{1-i}$=$2i+\frac{2(1+i)}{(1-i)(1+i)}=2i+1+i=1+3i$,
∴$\overline{z}=1-3i$.
故选:C.

点评 本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.直角坐标系中,点$(1,-\sqrt{3})$的极坐标可以是(  )
A.$(2,\frac{5π}{6})$B.$(2,\frac{11π}{6})$C.$(2,\frac{4π}{3})$D.$(2,\frac{5π}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一几何体由一个四棱锥和一个球组成,四棱锥的顶点都在球上,几何体的三视图如图所示,其中正视图和侧视图完全相同,球的表面积是36π,四棱锥的体积为(  )
A.18B.9C.9$\sqrt{2}$D.18$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知复数z1=2t+i,z2=1-2i,若$\frac{z_1}{z_2}$为实数,则实数t的值是(  )
A.1B.-1C.$\frac{1}{4}$D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若3a2+3b2-4c2=0,则直线ax+by+c=0被圆x2+y2=1所截得的弦长为(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知集合A={0,1,2,3,4},B={m|m=2n,n∈A},M={x∈R|x>2},则集合B∩∁RM={0,2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}满足an+2-an=d(d∈R,且d≠0),n∈N*,a1=2,a2=2,且a1,a3,a7成等比数列.
(Ⅰ)求d的值及数列{an}的通项公式;
(Ⅱ)设bn=$\frac{(n+1)^{2}}{{a}_{n}•{a}_{n+1}}$,cn=(-1)n•bn,求数列{cn}的前2n项和S2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,已知直线l的参数方程为$\left\{\begin{array}{l}x=1-\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=6cosθ.
(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)若点P的直角坐标为(1,0),曲线C与直线l交于A,B两点,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,利用随机模拟的方法可以估计图中由曲线$y=\frac{x^2}{2}$与两直线x=2及y=0所围成的阴影部分的面积S:
①先产生两组0~1的增均匀随机数,a=rand (  ),b=rand (  );
②产生N个点(x,y),并统计满足条件$y<\frac{x^2}{2}$的点(x,y)的个数N1,已知某同学用计算器做模拟试验结果,当N=1000时,N1=332,则据此可估计S的值为1.328.(保留小数点后三位)

查看答案和解析>>

同步练习册答案