ÈçͼËùʾ£¬Ö±Á¢ÔÚµØÃæÉϵÄÁ½¸ù¸Ö¹ÜABºÍCD£¬AB=10
3
m£¬CD=3
3
m£¬ÏÖÓøÖË¿Éþ¶ÔÕâÁ½¸ù¸Ö¹Ü½øÐмӹ̣¬ÓÐÁ½ÖÖ·½·¨£º
£¨1£©Èçͼ£¨1£©ÉèÁ½¸ù¸Ö¹ÜÏà¾à1m£¬ÔÚABÉÏȡһµãE£¬ÒÔCΪ֧µã½«¸ÖË¿ÉþÀ­Ö±²¢¹Ì¶¨ÔÚµØÃæµÄF´¦£¬ÐγÉÒ»¸öÖ±ÏßÐ͵ļӹ̣¨Í¼ÖÐÐéÏßËùʾ£©£®ÔòBE¶à³¤Ê±¸ÖË¿Éþ×î¶Ì£¿
£¨2£©Èçͼ£¨2£©ÉèÁ½¸ù¸Ö¹ÜÏà¾à3
3
m£¬ÔÚABÉÏȡһµãE£¬ÒÔCΪ֧µã½«¸ÖË¿ÉþÀ­Ö±²¢¹Ì¶¨ÔÚµØÃæµÄF ´¦£¬ÔÙ½«¸ÖË¿ÉþÒÀ´Î¹Ì¶¨ÔÚD´¦¡¢B´¦ºÍE´¦£¬ÐγÉÒ»¸öÈý½ÇÐÎÐ͵ļӹ̣¨Í¼ÖÐÐéÏßËùʾ£©£®ÔòBE ¶à³¤Ê±¸ÖË¿Éþ×î¶Ì£¿
¿¼µã£ºÀûÓõ¼ÊýÇó±ÕÇø¼äÉϺ¯ÊýµÄ×îÖµ,¸ù¾Ýʵ¼ÊÎÊÌâÑ¡Ôñº¯ÊýÀàÐÍ
רÌ⣺ӦÓÃÌâ,º¯ÊýµÄÐÔÖʼ°Ó¦ÓÃ,µ¼ÊýµÄ×ÛºÏÓ¦ÓÃ
·ÖÎö£ºÉè¸ÖË¿Éþ³¤Îªym£¬¡ÏCFD=¦È£¬
£¨1£©y=
3
3
tan¦È
+1
cos¦È
=
3
3
sin¦È
+
1
cos¦È
£¨ÆäÖÐ0£¼¦È£¼¦È0£¬tan¦È0=7£©£¬Çóµ¼y¡ä=
-3
3
cos¦È
sin2¦È
+
sin¦È
cos2¦È
£¬Óɵ¼ÊýµÄÕý¸ºÈ·¶¨º¯ÊýµÄµ¥µ÷ÐÔ£¬´Ó¶øÇó×îÖµ£»
£¨2£©y=(
3
3
sin¦È
+
3
3
cos¦È
)(1+cos¦È+sin¦È)
£¨ÆäÖÐ0£¼¦È£¼¦È0£¬tan¦È0=
12
3
-3
3
3
3
=3
£©£¬Çóµ¼y¡ä=(
-3
3
cos¦È
sin2¦È
+
sin¦È
cos2¦È
)(1+sin¦È+cos¦È)+(
3
3
sin¦È
+
3
3
cos¦È
)(cos¦È-sin¦È)
£¬Óɵ¼ÊýµÄÕý¸ºÈ·¶¨º¯ÊýµÄµ¥µ÷ÐÔ£¬´Ó¶øÇó×îÖµ£®
½â´ð£º ½â£º£¨1£©Éè¸ÖË¿Éþ³¤Îªym£¬¡ÏCFD=¦È£¬Ôò
y=
3
3
tan¦È
+1
cos¦È
=
3
3
sin¦È
+
1
cos¦È
£¨ÆäÖÐ0£¼¦È£¼¦È0£¬tan¦È0=7£©£¬
y¡ä=
-3
3
cos¦È
sin2¦È
+
sin¦È
cos2¦È
£¬
Ò×Öªy¡ä=
-3
3
cos¦È
sin2¦È
+
sin¦È
cos2¦È
Ϊ£¨0£¬¦È0£©ÉϵÄÔöº¯Êý£¬
ÇÒµ±tan¦È=
3
ʱ£¬y¡ä=0£»
¹Êy=
3
3
tan¦È
+1
cos¦È
=
3
3
sin¦È
+
1
cos¦È
ÔÚ£¨0£¬¦È0£©ÉÏÏȼõºóÔö£¬
¹Êµ±tan¦È=
3
ʱ£¬¼´BE=4
3
ʱ£¬ymin=8£»

£¨2£©Éè¸ÖË¿Éþ³¤Îªym£¬¡ÏCFD=¦È£¬Ôò
y=(
3
3
sin¦È
+
3
3
cos¦È
)(1+cos¦È+sin¦È)
£¨ÆäÖÐ0£¼¦È£¼¦È0£¬tan¦È0=
12
3
-3
3
3
3
=3
£©£¬
y¡ä=(
-3
3
cos¦È
sin2¦È
+
sin¦È
cos2¦È
)(1+sin¦È+cos¦È)+(
3
3
sin¦È
+
3
3
cos¦È
)(cos¦È-sin¦È)
£¬
Áîy'=0µÃsin¦È=cos¦È£¬
µ±¦È=
¦Ð
4
ʱ£¬¼´BE=6
3
ʱ£¬
ymin=6
3
(
2
+2)
£»
´ð£º°´·½·¨£¨1£©£¬BE=4
3
Ã×ʱ£¬¸ÖË¿Éþ×î¶Ì£»°´·½·¨£¨2£©£¬BE=6
3
Ã×ʱ£¬¸ÖË¿Éþ×î¶Ì£®
µãÆÀ£º±¾Ì⿼²éÁ˺¯ÊýÔÚʵ¼ÊÎÊÌâÖеÄÓ¦Óã¬Í¬Ê±¿¼²éÁ˵¼ÊýµÄ×ÛºÏÓ¦Óã¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª£ºa=(2
1
4
)
1
2
-£¨9.6£©0-(3
3
8
)-
2
3
+£¨1.5£©-2£¬b=£¨log43+log83£©£¨log32+log92£©¡Â£¨log224+lg
1
2
-log3
27
+lg2-log23£©£¬Çóa+3bµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¶þ´Îº¯Êýy=x2+ax+a-2£»
£¨1£©ÇóÖ¤£º²»ÂÛaΪºÎʵÊý£¬´Ëº¯ÊýͼÏóÓëxÖá×ÜÓÐÁ½¸ö½»µã£»
£¨2£©Éèa£¼0£¬µ±´Ëº¯ÊýͼÏóÓëxÖáµÄÁ½¸ö½»µãµÄ¾àÀëΪ
13
ʱ£¬Çó³ö´Ë¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨3£©Èô´Ë¶þ´Îº¯ÊýͼÏóÓëxÖá½»ÓÚA£¬BÁ½µã£¬ÔÚº¯ÊýͼÏóÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹µÃ¡÷PABµÄÃæ»ýΪ
3
13
2
£¬Èô´æÔÚ£¬Çó³öPµã×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

½â²»µÈʽ£ºloga£¨2x-3£©£¾loga£¨x-1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¼ÆË㣺£¨lg5£©2+lg2•lg50-log 
1
2
8+log3
427
3
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ
3
2
£¬Æä×ó½¹µãΪF£¨-
3
£¬0£©£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÒÑÖªµãD£¨1£¬0£©Ö±Ïߣºy=kx+m£¨k¡Ù0£©ÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£¬ÉèÏß¶ÎABµÄÖеãΪMÈôDM¡ÍAB£¬ÊÔÇókµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èôx¡Ê£¨
1
e
£¬1£©£¬a=lnx£¬b=2lnx£¬c=ln3x£¬Ôòa¡¢b¡¢cµÄ´óС¹ØÏµÊÇ
 
£¨°´ÓÉСµ½´óµÄ˳ÐòÅÅÁУ©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªf£¨x£©=logax£¬Æä·´º¯ÊýΪg£¨x£©£®
£¨1£©½â¹ØÓÚxµÄ·½³Ìf£¨x-1£©=f£¨a-x£©-f£¨5-x£©£»
£¨2£©ÉèF£¨x£©=£¨2m-1£©g£¨x£©+£¨
1
m
-
1
2
£©g£¨-x£©£¬ÈôF£¨x£©ÓÐ×îСֵ£¬ÊÔÇóÆä±í´ïʽh£¨m£©£»
£¨3£©Çóh£¨m£©µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÅ×ÎïÏßCµÄ¶¥µãΪԭµã£¬Æä½¹µãF£¨0£¬c£©£¨c£¾0£©µ½Ö±Ïßl£ºx-y-3=0µÄ¾àÀëΪ2
2
£¬ÉèPΪֱÏßlÉϵĵ㣬¹ýµãP×÷Å×ÎïÏßCµÄÁ½ÌõÇÐÏßPA£¬PB£¬ÆäÖÐA£¬BΪÇе㣮
£¨¢ñ£©ÇóÅ×ÎïÏßCµÄ·½³Ì£»
£¨¢ò£©µ±µãPÔÚÖ±ÏßlÉÏÒÆ¶¯Ê±£¬Çó|AF|•|BF|µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸