精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,其左焦点为F(-
3
,0).
(1)求椭圆C的方程;
(2)已知点D(1,0)直线:y=kx+m(k≠0)与椭圆C交于A,B两点,设线段AB的中点为M若DM⊥AB,试求k的取值范围.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(1)由题意得
e=
c
a
=
3
2
c=
3
a2=b2+c2
,由此能求出椭圆方程.
(2)设A(x1,y1),B(x2,y2),AB中点(x0,y0),由
y=kx+m
x2
4
+y2=1
,得(4k2+1)x2+8kmx+4(m2-1)=0,由此利用根的判别式、韦达定理,结合已知条件能求出k的取值范围.
解答: 解:(1)由题意得
e=
c
a
=
3
2
c=
3
a2=b2+c2

解得a=2,b=1,
∴椭圆方程为
x2
4
+y2=1

(2)设A(x1,y1),B(x2,y2),AB中点(x0,y0),
y=kx+m
x2
4
+y2=1
,得(4k2+1)x2+8kmx+4(m2-1)=0,
∵直线:y=kx+m(k≠0)与椭圆C交于A,B两点,
∴△=64k2-16(4k2+1)(m2-1)>0,
解得4k2+1>m2,①
x1+x2=-
8km
4k2+1

x0=-
4km
4k2+1
y0=
m
4k2+1

由题意知DM垂直平分AB,∴DM的方程为x=-ky+1,
将点M的坐标代入,得m=-
4k2+1
3k
,②
由①②,得4k2+1>
(4k2+1)2
9k

解得k<-
5
5
或k>
5
5

∴k的取值范围是(-∞,-
5
5
)∪(
5
5
,+∞).
点评:本题考查椭圆方程的求法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意函数与方程思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(lg9-1)2
的值等于(  )
A、lg9-1
B、1-lg9
C、8
D、2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=(1+i)(2-i)(i为虚数单位),则|z|=(  )
A、
5
B、
2
C、
10
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(x,y),
b
=(x-2,1),设集合P={x|
a
b
},Q={x||
b
|<
5
},当x∈P∩Q时,y的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,直立在地面上的两根钢管AB和CD,AB=10
3
m,CD=3
3
m,现用钢丝绳对这两根钢管进行加固,有两种方法:
(1)如图(1)设两根钢管相距1m,在AB上取一点E,以C为支点将钢丝绳拉直并固定在地面的F处,形成一个直线型的加固(图中虚线所示).则BE多长时钢丝绳最短?
(2)如图(2)设两根钢管相距3
3
m,在AB上取一点E,以C为支点将钢丝绳拉直并固定在地面的F 处,再将钢丝绳依次固定在D处、B处和E处,形成一个三角形型的加固(图中虚线所示).则BE 多长时钢丝绳最短?

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的前n项和为Sn(n∈N*).若S3,S9,S6成等差数列,则 
a8
a2+a5
的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三角函数f(x)=Asin(ωx+φ)+b同时满足以下三个条件:
①定义域为R;
②对任意实数x都有f(x)≤f(3);
③f(x+2)=
1
2
+
f(x)-f2(x)

则f(x)的单调区间为(  )
A、[4k-1,4k+3],k∈Z
B、[4k+1,4k+3],k∈Z
C、[8k-2,8k+2],k∈Z
D、[8k+2,8k+6],k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:

用反证法证明结论“?x0∈R”使得P(x0)成立,应假设(  )
A、?x0∈R,使得P(x0)不成立
B、?x∈R,P(x)均成立
C、?x∈R,P(x)均不成立
D、不存在x0∈R,使得P(x0)不成立

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的一个顶点为A(0,-1),焦点在x轴上,离心率为
6
3

(1)求椭圆的方程;
(2)设椭圆与直线y=kx+2(k≠0)相交于不同的两点M、N,当|MN|=
3
时,求k的取值.

查看答案和解析>>

同步练习册答案