精英家教网 > 高中数学 > 题目详情

【题目】求所有的正整数,使得是完全平方数.

【答案】见解析

【解析】

.

).则

.

.则

.

于是,是完全平方数.

下面证明:不存在互质的正整数,使得是完全平方数.

假设存在,不妨设是满足上述要求且使得其和最小的一组正整数.

,知不能同为偶数,所以,是奇数.

.

于是,都是完全平方数.

由于都是奇数,故可设

从而,,且

于是,一奇一偶(不妨设是偶数).

为两两互质的正整数,且都是奇数).由对称性不妨设

则由,得

.

,整理得

(1)若

因为是奇数,所以,由,知是偶数,是奇数.

于是,,矛盾.

(2)由

是奇数,可设

代入,得

故正整数对使得是完全平方数.

由于,这与的最小性矛盾.

(3)由

,这与矛盾.

(4)由

这与矛盾.

综上,不存在互质的正整数,使得是完全平方数.

故不存在正整数,使得是完全平方数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机对心肺疾病入院的人进行问卷调查,得到了如下的列联表:

患心肺疾病

不患心肺疾病

合计

合计

(1)用分层抽样的方法在患心肺疾病的人群中抽人,其中男性抽多少人?

(2)在上述抽取的人中选人,求恰好有名女性的概率;

(3)为了研究心肺疾病是否与性别有关,请计算出统计量,你有多大把握认为心肺疾病与性别有关?

下面的临界值表供参考:

参考公式: ,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有(

A.360B.720C.480D.420

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某电视台主办的歌手大奖赛上七位评委为甲、乙两名选手打出的分数的茎叶图(其中为数字0~9中的一个),则下列结论中正确的是( )

A. 甲选手的平均分有可能和乙选手的平均分相等

B. 甲选手的平均分有可能比乙选手的平均分高

C. 甲选手所有得分的中位数比乙选手所有得分的中位数低

D. 甲选手所有得分的众数比乙选手所有得分的众数高

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某医药公司研发一种新的保健产品,从一批产品中抽取200盒作为样本,测量产品的一项质量指标值,该指标值越高越好.由测量结果得到如下频率分布直方图:

(Ⅰ)求,并试估计这200盒产品的该项指标的平均值;

(Ⅱ)① 用样本估计总体,由频率分布直方图认为产品的质量指标值服从正态分布,计算该批产品指标值落在上的概率;参考数据:附:若,则.

②国家有关部门规定每盒产品该项指标不低150均为合格,且按指标值的从低到高依次分为:合格、优良、优秀三个等级,其中为优良,不高于180为合格,不低于220为优秀,在①的条件下,设公司生产该产品1万盒的成本为15万元,市场上每盒该产品的等级售价(单位:元)如图表,求该公司每万盒的平均利润.

等级

合格

优良

优秀

价格

10

20

30

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】计算机考试分理论考试与实际操作两部分,每部分考试成绩只记合格不合格,两部分考试都合格者,则计算机考试合格,并颁发合格证书甲、乙、丙三人在理论考试中合格的概率依次为,在实际操作考试中合格的概率依次为,所有考试是否合格相互之间没有影响.

1)假设甲、乙、丙三人同时进行理论与实际操作两项考试,谁获得合格证书的可能性最大?

2)这三人进行理论与实际操作两项考试后,求恰有两人获得合格证书的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】端午节(每年农历五月初五),是中国传统节日,有吃粽子的习俗.某超市在端午节这一天,每售出kg粽子获利润元,未售出的粽子每kg亏损.根据历史资料,得到销售情况与市场需求量的频率分布表,如下表所示.该超市为今年的端午节预购进了kg粽子.(单位:kg)表示今年的市场需求量,(单位:元)表示今年的利润.

市场需求量(kg

频率

0.1

0.2

0.3

0.25

0.15

1)将表示为的函数;

2)在频率分布表的市场需求量分组中,以各组的区间中间值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中间值的概率(例如:若需求量,则取,且的概率等于需求量落入的频率),求的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,的三条垂线交于点内的任意一点.求证:的外心三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知为抛物线上两点,为抛物线焦点.分别过作抛物线的切线交于点.

(1)若,求

(2)若分别交轴于两点,试问的外接圆是否过定点?若是,求出该定点坐标,若不是,请说明理由.

查看答案和解析>>

同步练习册答案