精英家教网 > 高中数学 > 题目详情
20.函数f(x)=ax3+bx2+cx+d(a≠0)在(-∞,+∞)上是减少的,则下列各式中成立的是(  )
A.a>0,b2+3ac≥0B.a>0,b2-3ac≤0C.a<0,b2+3ac≥0D.a<0,b2-3ac≤0

分析 求出导函数,利用函数的单调性,列出不等式推出结果即可.

解答 解:f′(x)=3ax2+2bx+c(a≠0).
∵函数为减少的,则f′(x)≤0恒成立.
∴a<0且△=4b2-12ac≤0,即b2-3ac≤0.
故选:D.

点评 本题考查函数的单调性的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知sinα是方程5x2-7x-6=0的根,求:
(1)$\frac{cos(2π-α)cos(π+α)ta{n}^{2}(2π-α)}{cos(\frac{π}{2}+α)sin(2π-α)co{t}^{2}(π-α)}$的值.
(2)在△ABC中,sinA+cosA=$\frac{\sqrt{2}}{2}$,AC=2,AB=3,求tanA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列说法:
①将一组数据中的每一个数据都加上或减去同一个常数后,方差不变;
②设有一个线性回归方程$\stackrel{∧}{y}$=3-5x,变量x增加1个单位时,y平均增加5个单位;
③设具有相关关系的两个变量x,y的相关系数为r,则|r|越接近于0,x和y之间的线性相关程度越强;
④在一个2×2列联表中,由计算得K2的值,则K2的值越大,判断两个变量间有关联的把握就越大.
其中错误的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.${({2\frac{7}{9}})^{0.5}}+{0.1^{-2}}+{({2\frac{10}{27}})^{-\frac{2}{3}}}-{π^0}+\frac{37}{48}$=$\frac{807}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.数列{an}满足(-1)nan-an-1=2n,n≥2,则{an}的前100项和为(  )
A.-4750B.4850C.-5000D.4750

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=2lnx-$\frac{1}{2}$ax2-bx-1.
(1)当a=b=1时,求函数f(x)的最大值;
(2)当b=1,a≤0时,求函数f(x)的单调区间;
(3)当a=0,b=-4时,方程x2+2mf(x)=0有唯一解,求实数m取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设全集U=R,集合A=$\left\{{x||{x-a}|<1}\right\},B=\left\{{x|\frac{x+1}{x-2}≤2}\right\}$.
(1)求集合B;
(2)若A⊆(∁UB),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(Ⅰ)比较(x+1)(x-3)与(x+2)(x-4)的大小.
(Ⅱ)一段长为36m的篱笆围成一个矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大.最大面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设α,β是一个钝角三角形的两个锐角,下列四个不等式中的正确的个数是(  )
(1)cosα>sinβ
(2)$sinα+sinβ<\sqrt{2}$
(3)cosα+cosβ>1
(4)$\frac{1}{2}tan({α+β})<tan\frac{α+β}{2}$.
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案