精英家教网 > 高中数学 > 题目详情
9.下列函数中,既是偶函数又存在零点的是(  )
A.y=x2+1B.y=2x-1C.y=sinxD.y=cosx

分析 根据函数奇偶性和函数零点的定义进行判断即可.

解答 解:A.∵y=x2+1≥1,∴函数y=x2+1没有零点,不满足条件.
B.y=2x-1为增函数,不是偶函数,不满足条件.
C.y=sinx是奇函数,不满足条件.
D.y=cosx是偶函数,且函数存在零点,满足条件.
故选:D

点评 本题主要考查函数奇偶性的判断,以及函数零点的应用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.求经过点(-5,2),焦点为$({\sqrt{6},0})$的双曲线的标准方程,并求出该双曲线的实轴长,虚轴长,离心率,渐近线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.把1011011(2)转化成十进制数为(  )
A.88B.89C.90D.91

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在棱长为2的正方体ABCD-A1B1C1D1中,在正方体ABCD-A1B1C1D1内随机取一点P,则点P到点A的距离大于1的概率为1-$\frac{π}{48}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知抛物线C:x2=4y的焦点为F,过点D(0,-1)的直线l与抛物线C交于不同的A、B两点.
(Ⅰ)若$|{AB}|=4\sqrt{3}$,求直线l的方程;
(Ⅱ)记FA、FB的斜率分别为k1、k2,试问:k1+k2的值是否随直线l位置的变化而变化?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若a>b>1,且a+b+c=0,则$\frac{c}{a}$的取值范围是(-2,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别是F1(-c,0)、F2(c,0),若离心率$e=\frac{{\sqrt{5}-1}}{2}$(e≈0.618),则称椭圆C为“黄金椭圆”.则下列三个命题中正确命题的个数是(  )
①在黄金椭圆C中,a、b、c成等比数列;
②在黄金椭圆C中,若上顶点、右顶点分别为E、B,则∠F1EB=90°;
③在黄金椭圆C中,以A(-a,0)、B(a,0)、D(0,-b)、E(0,b)为顶点的菱形ADBE的内切圆过焦点F1、F2
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列的算法流程图中,能够实现两个正整数的最大公约数的算法有(  )个
A.1B.2C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知方程2x2-($\sqrt{3}+1$)x+m=0的两根sinθ和cosθ,(其中θ∈(0,$\frac{π}{4}$)),求:
(1)求m的值.
(2)求sinθ-cosθ

查看答案和解析>>

同步练习册答案