分析 由条件利用韦达定理、同角三角函数的基本关系,求得m以及sinθ-cosθ的值.
解答 解:(1)∵方程2x2-($\sqrt{3}+1$)x+m=0的两根sinθ和cosθ,(其中θ∈(0,$\frac{π}{4}$)),
∴sinθ+cosθ=$\frac{\sqrt{3}+1}{2}$,sinθ•cosθ=$\frac{m}{2}$,∴1+2sinθcosθ=$\frac{2+\sqrt{3}}{2}$,∴m=$\frac{\sqrt{3}}{2}$.
(2)由以上可得,sinθ•cosθ=$\frac{\sqrt{3}}{4}$,∴sinθ-cosθ=-$\sqrt{{(sinθ-cosθ)}^{2}}$=-$\sqrt{1-2sinθcosθ}$=-$\frac{\sqrt{4-2\sqrt{3}}}{2}$=-($\frac{\sqrt{3}-1}{2}$)=$\frac{1-\sqrt{3}}{2}$.
点评 本题主要考查韦达定理,同角三角函数的基本关系,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com