精英家教网 > 高中数学 > 题目详情
14.在三棱锥A1-ABC中,AA1⊥底面ABC,BC⊥A1B,AA1=AC=2,则该三棱锥的外接球的表面积为8π.

分析 将三棱锥补成长方体,它的对角线是其外接球的直径,从而即可求得该三棱锥的外接球的表面积.

解答 解:由三棱锥A1-ABC中,AA1⊥底面ABC,BC⊥A1B,将三棱锥补成长方体,它的对角线是其外接球的直径,则
三棱锥外接球的直径为2$\sqrt{2}$,半径为$\sqrt{2}$,
∴外接球的表面积S=4πR2=8π.
故答案为:8π.

点评 本题考查球的表面积的计算,考查学生分析解决问题的能力,得出将三棱锥补成长方体,它的对角线是其外接球的直径是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知抛物线C:x2=4y的焦点为F,过点D(0,-1)的直线l与抛物线C交于不同的A、B两点.
(Ⅰ)若$|{AB}|=4\sqrt{3}$,求直线l的方程;
(Ⅱ)记FA、FB的斜率分别为k1、k2,试问:k1+k2的值是否随直线l位置的变化而变化?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=x3-$\frac{3}{2}$x2+a在区间[-1,1]上的最大值为2,则a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.己知[x]表示不大于实数x的最大整数,如[π]=3,[-$\frac{10}{3}$]=-4,若令{x}=x-[x],z=$\frac{\{\sqrt{3}-2×\{\sqrt{2}\}\}}{\{\sqrt{3}{\}}^{2}-2×\{\sqrt{2}{\}}^{2}-2}$,则[z]=(  )
A.0B.1C.2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合M={a|cosα<sinα,0≤α≤2π},N={α|tanα<sinα},那么M∩N是(  )
A.($\frac{π}{2}$,π)B.($\frac{π}{4}$,$\frac{3π}{4}$)C.(π,$\frac{3π}{2}$)D.($\frac{3π}{4}$,$\frac{5π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知方程2x2-($\sqrt{3}+1$)x+m=0的两根sinθ和cosθ,(其中θ∈(0,$\frac{π}{4}$)),求:
(1)求m的值.
(2)求sinθ-cosθ

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设二项式(x-y)m(m∈N*)的展开式中,x4yr的系数为-35,则(2x+$\frac{1}{2\sqrt{x}}$)r+3的展开式中,常数项为(  )
A.$\frac{21}{2}$B.$\frac{15}{4}$C.10D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,A(-1,0),B(1,0),若△ABC的重心G和垂心H满足GH平行于x轴(G.H不重合),
(I)求动点C的轨迹Γ的方程;
(II)已知O为坐标原点,若直线AC与以O为圆心,以|OH|为半径的圆相切,求此时直线AC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知a1,a2,a3,…,ak是有限项等差数列,且a4+a7+a10=17,a4+a5+a6+a7+a8+a9+a10+a11+a12+a13+a14=77,若ak=13,则k的值是18.

查看答案和解析>>

同步练习册答案