精英家教网 > 高中数学 > 题目详情
1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别是F1(-c,0)、F2(c,0),若离心率$e=\frac{{\sqrt{5}-1}}{2}$(e≈0.618),则称椭圆C为“黄金椭圆”.则下列三个命题中正确命题的个数是(  )
①在黄金椭圆C中,a、b、c成等比数列;
②在黄金椭圆C中,若上顶点、右顶点分别为E、B,则∠F1EB=90°;
③在黄金椭圆C中,以A(-a,0)、B(a,0)、D(0,-b)、E(0,b)为顶点的菱形ADBE的内切圆过焦点F1、F2
A.0B.1C.2D.3

分析 对于①,由e=$\frac{\sqrt{5}-1}{2}$,可得e2+e-1=0,运用离心率公式和等比数列的中项的性质,即可判断;
对于②,求出即有$\overrightarrow{E{F}_{1}}$=(-c,-b),$\overrightarrow{EB}$=(a,-b),运用向量的数量积的坐标表示,即可判断;
对于③,设内切圆的半径为r,由四边形ADEB的面积可为四个三角形的面积,化简整理计算可得半径r=c,即可判断.

解答 解:对于①,由e=$\frac{\sqrt{5}-1}{2}$,可得e2+e-1=0,由e=$\frac{c}{a}$,a2-c2=b2,可得c2+ac-a2=0,即ac=b2
则a,b,c成等比数列,故①正确;
对于②,在黄金椭圆C中,上顶点、右顶点分别为E(0,b)、B(a,0),即有$\overrightarrow{E{F}_{1}}$=(-c,-b),
$\overrightarrow{EB}$=(a,-b),由①即有$\overrightarrow{E{F}_{1}}$•$\overrightarrow{EB}$=-ac+b2=0,则∠F1EB=90°,故②正确;
对于③,设内切圆的半径为r,由四边形ADEB的面积可为四个三角形的面积,可得
$\frac{1}{2}$•2a•2b=4•$\frac{1}{2}$r•$\sqrt{{a}^{2}+{b}^{2}}$,解得r=$\frac{ab}{\sqrt{{a}^{2}+{b}^{2}}}$=$\sqrt{\frac{{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}}$=$\sqrt{\frac{{a}^{3}c}{{a}^{2}+ac}}$=$\sqrt{\frac{{a}^{2}c}{\frac{{a}^{2}}{c}}}$=c,则内切圆过焦点,
故③正确.
故选:D.

点评 本题考查椭圆的方程和性质,注意运用离心率的公式,考查数量积的运用判断直角,同时考查四边形的内切圆的性质,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.设X是离散型随机变量,其分布列为其中a≠0,b≠0,则$\frac{1}{a}$+$\frac{1}{b}$的最小值为8
 X 0 1 2
 P a b $\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A,B,C所对的边分别为a,b,c,且(2b-a)cosC=ccosA.
(1)求角C的大小;
(2)若sinA+sinB=2$\sqrt{6}$sinAsinB,c=3,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中,既是偶函数又存在零点的是(  )
A.y=x2+1B.y=2x-1C.y=sinxD.y=cosx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在平面直角坐标系xOy中,圆C的方程为(x-2)2+y2=1,点P在直线l:x+y+1=0上,若过点P存在直线m与圆C交于A,B两点,且点A为PB中点,则点P的恒坐标的取值范围是[-1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.给出下列命题:
①双曲线$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{9}$=1与椭圆$\frac{{x}^{2}}{35}$+y2=1有相同的焦点;
②过点P(2,1)的抛物线的标准方程是y2=$\frac{1}{2}$x;
③已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,若它的离心率为$\sqrt{5}$,则双曲线C的一条渐近线方程为y=2x;
④椭圆$\frac{{x}^{2}}{m+1}$+$\frac{{y}^{2}}{m}$=1的两个焦点为F1,F2,P为椭圆上的动点,△PF1F2的面积的最大值为2,则m的值为2.
其中真命题的序号为①③.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若sin4=a,则cos4=-$\sqrt{1-si{n}^{2}4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点为F2(1,0),且该椭圆过定点M(1,$\frac{\sqrt{2}}{2}$).
(I)求椭圆E的标准方程;
(Ⅱ)设点Q(2,0),过点F2作直线l与椭圆E交于A,B两点,且$\overrightarrow{{F}_{2}A}$=λ$\overrightarrow{{F}_{2}B}$,若λ∈[-2,-1]以QA,QB为邻边作平行四边形QACB,求对角线QC的长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若x,y满足约束条件$\left\{\begin{array}{l}{x+2y≥8}\\{x≤4}\\{y≤3}\end{array}\right.$,则$\frac{y}{x}$的最小值为$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案