精英家教网 > 高中数学 > 题目详情
16.在平面直角坐标系xOy中,圆C的方程为(x-2)2+y2=1,点P在直线l:x+y+1=0上,若过点P存在直线m与圆C交于A,B两点,且点A为PB中点,则点P的恒坐标的取值范围是[-1,2].

分析 设点P(x0,-x0-1),B(2+cosθ,sinθ),求出A的坐标,代入圆C:(x-2)2+y2=1,利用辅助角公式,即可确定点P横坐标x0的取值范围.

解答 解:设点P(x0,-x0-1),B(2+cosθ,sinθ),则
由条件得A点坐标为x=$\frac{1}{2}$(x0+2+cosθ),y=$\frac{1}{2}$(sinθ-x0-1),
从而[$\frac{1}{2}$(x0+2+cosθ)-2]2+[$\frac{1}{2}$(sinθ-x0-1)]2=1,
整理得(x0-2)cosθ-(x0+1)sinθ+x02-x0+1=0,
从而$\sqrt{2{{x}_{0}}^{2}-2{x}_{0}+5}$sin(θ+α)=-x02+x0-1,
于是由$\sqrt{2{{x}_{0}}^{2}-2{x}_{0}+5}$≥|-x02+x0-1|,解得-1≤x0≤2.
故答案为:[-1,2].

点评 本题考查直线与圆的位置关系,考查参数法的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.函数f(x)=sin(x+$\frac{π}{2}$)+cos(x-$\frac{π}{2}$),x∈[0,π],当x=$\frac{π}{4}$时,f(x)取到最大值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在直角坐标系xOy中,曲线C1的方程为$\frac{{x}^{2}}{2}$+y2=1,以坐标原点为极点,x轴正半轴为极轴,并取相同的单位长度建立坐标系,曲线C2的极坐标方程为2ρ=sinθ.
(1)写出曲线C1的参数方程,并求出C2的直角坐标方程;
(2)若P,Q分别是曲线C1,C2上的动点,求|$\overrightarrow{PQ}$|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知抛物线C:x2=4y的焦点为F,过点D(0,-1)的直线l与抛物线C交于不同的A、B两点.
(Ⅰ)若$|{AB}|=4\sqrt{3}$,求直线l的方程;
(Ⅱ)记FA、FB的斜率分别为k1、k2,试问:k1+k2的值是否随直线l位置的变化而变化?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的图象如图所示,若f(α)=3,α∈($\frac{π}{3}$,$\frac{5π}{6}$),则sinα的值为(  )
A.$\frac{3\sqrt{3}+4}{10}$B.$\frac{3\sqrt{3}-4}{10}$C.$\frac{3+4\sqrt{3}}{10}$D.$\frac{3-4\sqrt{3}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别是F1(-c,0)、F2(c,0),若离心率$e=\frac{{\sqrt{5}-1}}{2}$(e≈0.618),则称椭圆C为“黄金椭圆”.则下列三个命题中正确命题的个数是(  )
①在黄金椭圆C中,a、b、c成等比数列;
②在黄金椭圆C中,若上顶点、右顶点分别为E、B,则∠F1EB=90°;
③在黄金椭圆C中,以A(-a,0)、B(a,0)、D(0,-b)、E(0,b)为顶点的菱形ADBE的内切圆过焦点F1、F2
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求函数f(x)=-x4+2x2+3,x∈[-3,2]的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=x3-$\frac{3}{2}$x2+a在区间[-1,1]上的最大值为2,则a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设二项式(x-y)m(m∈N*)的展开式中,x4yr的系数为-35,则(2x+$\frac{1}{2\sqrt{x}}$)r+3的展开式中,常数项为(  )
A.$\frac{21}{2}$B.$\frac{15}{4}$C.10D.5

查看答案和解析>>

同步练习册答案