精英家教网 > 高中数学 > 题目详情
3.某企业2014年2月份生产A,B,C三种产品共6000件,根据分层抽样的结果,该企业统计员制作了如下的统计表格:
产品分类ABC
产品数量2 600
样本容量260
由于不小心,表格中B,C产品的有关数据已被污染看不清楚,统计员记得B产品的样本容量比C产品的样本容量多20,根据以上信息,可得C产品数量是(  )
A.160B.180C.1600D.1800

分析 根据分层抽样的定义,建立方程关系即可得到结论.

解答 解:∵$\frac{样本容量}{产品数量}$=$\frac{260}{2600}$=$\frac{1}{10}$,
∴样本的总容量是600,设C产品样本容量是x,
根据B产品的样本容量比C产品的样本容量多20,
则B产品的样本容量是x+20,
又x+x+20=600-260,即x=160,
∴可得C产品数量是160$÷\frac{1}{10}$=1600
故选:C.

点评 本题主要考查分层抽样的应用,根据条件建立方程是解决本题的关键,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.函数y=sinα•tanα的奇偶性是偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某学校高三年级有学生500人,其中男生300人,女生200人,为了研究学生的数学成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们期中考试的数学分数,然后按性别分为男、女两组,再将两组学生的分数分成5组:[100,110),[110,120),[120,130),[130,140),[140,150]分别加以统计,得到如图所示的频率分布直方图.

(1)从样本中分数小于110分的学生中随机抽取2人,求两人恰好为一男一女的概率;
(2)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?
P(K2≥k00.1000.0500.0100.001
k02.7063.8416.63510.828
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若实数x,y满足$\left\{\begin{array}{l}x+y-3≥0\\ x-y-3≤0\\ 0≤y≤1\end{array}\right.$,则$z=\frac{2x+y}{x+y}$的最小值为(  )
A.$\frac{5}{3}$B.2C.$\frac{3}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设点P是曲线C:y=x3-$\sqrt{3}$x+$\frac{2}{3}$上的任意一点,曲线C在P点处的切线的倾斜角为α,则角α的取值范围是(  )
A.[$\frac{2}{3}$π,π)B.($\frac{π}{2}$,$\frac{5}{6}$π]C.[0,$\frac{π}{2}$)∪[$\frac{5}{6}$π,π)D.[0,$\frac{π}{2}$)∪[$\frac{2}{3}$π,π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数F(x)=ex满足F(x)=g(x)+h(x),且g(x),h(x)分别是R上的偶函数和奇函数,若?x∈(0,2]使得不等式g(2x)-ah(x)≥0恒成立,则实数a的取值范围是(  )
A.$({-∞,2\sqrt{2}})$B.$({-∞,2\sqrt{2}}]$C.$({0,2\sqrt{2}}]$D.$({2\sqrt{2},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)的图象在点(x0,f(x0))处的切线方程l:y=g(x),若函数f(x)满足?x∈l(其中I为函数f(x)的定义域),当x≠x0时,[f(x)-g(x)](x-x0)>0恒成立,则称x0为函数f(x)的“转折点”,若函数f(x)=lnx-ax2-x在(0,e]上存在一个“转折点”,则a的取值范围为(  )
A.$[{\frac{1}{{2{e^2}}},+∞})$B.$({-1,\frac{1}{{2{e^2}}}}]$C.$[{-\frac{1}{{2{e^2}}},1})$D.$({-∞,-\frac{1}{{2{e^2}}}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}满足a1=1,并且a2n=2an,a2n+1=an+1(n∈N*),则a5=3,a2016=192.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.无穷等比数列首项为1,公比为q(q>0)的等边数列前n项和为Sn,则$\underset{lim}{n→∞}$Sn=2,则q=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案