精英家教网 > 高中数学 > 题目详情

已知数列的前项和,求证:是等比数列,并求出通项公式.

解析试题分析:利用数列中以及求出,得出是以为首项,为公比的等比数列.
试题解析:

,又
,又由
是以为首项,为公比的等比数列.

考点:数列通项公式的推导证明

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知{an}是一个公差大于0的等差数列,且满足a4a5=55,a3+a6=16
(1)求数列{an}的通项公式;
(2)若数列{an}和数列{bn}满足等式:
an-1=,an=为正整数),
设数列{bn}的前项和,cn=(an+19)(Sn+50),数列{cn}前n项和为Tn
求Tn的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列{bn}满足bn+2=-bn+1bn(n∈N*),b2=2b1.
(1)若b3=3,求b1的值;
(2)求证数列{bnbn+1bn+2n}是等差数列;
(3)设数列{Tn}满足:Tn+1Tnbn+1(n∈N*),且T1b1=-,若存在实数pq,对任意n∈N*都有pT1T2T3+…+Tnq成立,试求qp的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

称满足以下两个条件的有穷数列阶“期待数列”:
;②.
(1)若等比数列阶“期待数列”,求公比q及的通项公式;
(2)若一个等差数列既是阶“期待数列”又是递增数列,求该数列的通项公式;
(3)记n阶“期待数列”的前k项和为
(i)求证:
(ii)若存在使,试问数列能否为n阶“期待数列”?若能,求出所有这样的数列;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若数列满足,则称数列为“平方递推数列”.已知数列中,,点在函数的图象上,其中为正整数.
(Ⅰ)证明数列是“平方递推数列”,且数列为等比数列;
(Ⅱ)设(Ⅰ)中“平方递推数列”的前项积为,即,求
(Ⅲ)在(Ⅱ)的条件下,记,求数列的前项和,并求使的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列的前项和为,若,点在直线上.
⑴求证:数列是等差数列;
⑵若数列满足,求数列的前项和
⑶设,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设递增等差数列的前n项和为,已知的等比中项.
(l)求数列的通项公式;
(2)求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为数列的前项和,对任意的,都有为正常数).
(1)求证:数列是等比数列;
(2)数列满足,求数列的通项公式;
(3)在满足(2)的条件下,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列{an}是等差数列,数列{bn}的前n项和Sn满足
(Ⅰ)求数列{an}和{bn}的通项公式:
(Ⅱ)设Tn为数列{Sn}的前n项和,求Tn

查看答案和解析>>

同步练习册答案