15£®ÒÑÖª{an}µÄǰnÏîºÍΪSn£¬ÇÒSn+$\frac{1}{2}$an=1£¨n¡ÊN+£©£®
£¨1£©Çó{an}µÄͨÏʽ£»
£¨2£©Éèbn=log3£¨1-Sn+1£©£¬n¡ÊN+£¬Tn=$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+¡­+$\frac{1}{{b}_{n}{b}_{n+1}}$£¬ÇóʹTn£¾$\frac{100}{201}$³ÉÁ¢µÄ×îСµÄÕýÕûÊýnµÄÖµ£®

·ÖÎö £¨1£©Í¨¹ýSn+$\frac{1}{2}$an=1ÓëSn+1+$\frac{1}{2}$an+1=1×÷²î£¬ÕûÀíµÃan+1=$\frac{1}{3}•$an£¬½ø¶ø¿ÉµÃ½áÂÛ£»
£¨2£©Í¨¹ýan=$\frac{2}{{3}^{n}}$¿ÉÖªSn=1-$\frac{1}{{3}^{n}}$£¬½ø¶øbn=-n-1£¬n¡ÊN+£¬ÁÑÏî¿ÉÖª$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$£¬²¢ÏîÏà¼Ó¿ÉÖªTn=$\frac{1}{2}$-$\frac{1}{n+2}$£¬ÎÊÌâת»¯Îª½â²»µÈʽ$\frac{1}{2}$-$\frac{1}{n+2}$£¾$\frac{100}{201}$£¬¼ÆËã¼´µÃ½áÂÛ£®

½â´ð ½â£º£¨1£©¡ßSn+$\frac{1}{2}$an=1£¨n¡ÊN+£©£¬
¡àSn+1+$\frac{1}{2}$an+1=1£¬
Á½Ê½Ïà¼õµÃ£ºan+1+$\frac{1}{2}$£¨an+1-an£©=0£¬
ÕûÀíµÃ£ºan+1=$\frac{1}{3}•$an£¬
ÓÖ¡ßa1+$\frac{1}{2}$a1=1£¬¼´a1=$\frac{2}{3}$£¬
¡àÊýÁÐ{an}ÊÇÒÔ$\frac{2}{3}$ΪÊ×Ïî¡¢$\frac{1}{3}$Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬
¡àan=$\frac{2}{3}$•$\frac{1}{{3}^{n-1}}$=$\frac{2}{{3}^{n}}$£»
£¨2£©¡ßan=$\frac{2}{{3}^{n}}$£¬
¡àSn=1-$\frac{1}{2}$an=1-$\frac{1}{{3}^{n}}$£¬
¡àbn=log3£¨1-Sn+1£©=$lo{g}_{3}[1-£¨1-\frac{1}{{3}^{n+1}}£©]$=-n-1£¬n¡ÊN+£¬
¡à$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{-£¨n+1£©[-£¨n+2£©]}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$£¬
Tn=$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+¡­+$\frac{1}{{b}_{n}{b}_{n+1}}$
=$\frac{1}{2}-\frac{1}{3}$+$\frac{1}{3}-\frac{1}{4}$+¡­+$\frac{1}{n+1}$-$\frac{1}{n+2}$
=$\frac{1}{2}$-$\frac{1}{n+2}$£¬
¡àTn£¾$\frac{100}{201}$¼´$\frac{1}{2}$-$\frac{1}{n+2}$£¾$\frac{100}{201}$£¬
ÕûÀíµÃ£ºn£¾400£¬
¡à×îСµÄÕýÕûÊýn=401£®

µãÆÀ ±¾ÌâÊÇÒ»µÀ¹ØÓÚÊýÁÐÓë²»µÈʽµÄ×ÛºÏÌ⣬¿¼²éÔËËãÇó½âÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®º¯Êýy=$\frac{{{x^2}+3}}{{\sqrt{{x^2}+2}}}$µÄ×îСֵÊÇ$\frac{3\sqrt{2}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÇóÖ¤£º
£¨1£©|a+b|+|a-b|¡Ý2|a|£»
£¨2£©|a+b|-|a-b|¡Ü2|b|

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔÚÒ»ÅúÃÞ»¨Öгé²âÁË60¸ùÃÞ»¨µÄÏËά³¤¶È£¬½á¹ûÈçÏ£¨µ¥Î»£ºmm£©
82202352321252932938628206
3233553573332511323329450296
11523635732652301140328238358
58255143360340302370343260303
591466026317030538034661305
17534826438362306195350265385
×÷³öÕâ¸öÑù±¾µÄƵÂÊ·Ö²¼Ö±·½Í¼£¨ÔÚ¶ÔÑù±¾Êý¾Ý·Ö×éʱ£¬¿ÉÊÔÓò»Í¬µÄ·Ö×鷽ʽ£¬È»ºó´ÓÖÐÑ¡ÔñÒ»ÖÖ½ÏΪÊʺϵķÖ×é·½·¨£©£®ÃÞ»¨µÄÏËά³¤¶ÈÊÇÃÞ»¨ÖÊÁ¿µÄÖØÒªÖ¸±ê£¬ÄãÄÜ´ÓͼÖзÖÎö³öÕâÅúÃÞ»¨µÄÖÊÁ¿×´¿öÂð£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Çósin£¨2x+$\frac{¦Ð}{3}$£©=-$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Èô´æÔÚʵÊýa£¬¶ÔÈÎÒâʵÊýx¡Ê[0£®m]£¬¾ùÓУ¨sinx-a£©£¨cosx-a£©¡Ü0£¬ÔòʵÊýmµÄ×î´óÖµÊÇ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{4}$B£®$\frac{¦Ð}{2}$C£®$\frac{3¦Ð}{4}$D£®$\frac{5¦Ð}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªµãA£¨3£¬0£©£¬B£¨x0£¬y0£©ÊÇÔ²C£º£¨x-1£©2+y2=4ÉÏÒìÓÚµãAµÄÒ»¸ö¶¯µã£¬OÊÇ×ø±êÔ­µã£¬µãMÊÇÏß¶ÎABµÄÖе㣮
£¨1£©Èô$\overrightarrow{OA}$•$\overrightarrow{OB}$=0£¬ÇóµãBµÄ×ø±ê£»
£¨2£©ÇóµãMµÄ¹ì¼£·½³Ì£»
£¨3£©Çó|OM|µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªÔ²M£ºx2+y2-4x+4y-4=0£¬Ö±Ïßl£ºx-y-5=0
£¨1£©ÇóÔ²ÐÄMµ½Ö±ÏßlµÄ¾àÀ룻
£¨2£©ÇóÖ±Ïßl±»Ô²Ëù½ØµÃµÄÏÒ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Ä³µØÇø2007ÄêÖÁ2013ÄêÅ©´å¾ÓÃñ¼ÒÍ¥È˾ù´¿ÊÕÈëy£¨µ¥Î»£ºÇ§Ôª£©µÄÊý¾ÝÈç±í£º
Äê·Ý2007200820092010201120122013
Äê·Ý´úºÅt1  2  3  4  5  67
È˾ù´¿ÊÕÈëy2.93.33.64.44.85.25.9
£¨1£©Çóy¹ØÓÚtµÄÏßÐԻع鷽³Ì£»
£¨2£©ÀûÓã¨1£©ÖеĻع鷽³Ì£¬Ô¤²â¸ÃµØÇø2015ÄêÅ©´å¾ÓÃñ¼ÒÍ¥È˾ù´¿ÊÕÈ룮
¸½£º»Ø¹éÖ±Ïßy=bx+aµÄбÂʺͽؾàµÄ×îС¶þ³Ë¹À¼Æ¹«Ê½·Ö±ðΪ£ºb=$\frac{\sum_{i=1}^{n}£¨{t}_{i}-\overline{t}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{t}_{i}-\overline{t}£©^{2}}$£¬a=$\overline{y}$-b$\overline{t}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸