精英家教网 > 高中数学 > 题目详情
20.若存在实数a,对任意实数x∈[0.m],均有(sinx-a)(cosx-a)≤0,则实数m的最大值是(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.$\frac{3π}{4}$D.$\frac{5π}{4}$

分析 根据已知不等式得到,$\left\{\begin{array}{l}{sinx-a≤0}\\{cosx-a≥0}\end{array}\right.$或$\left\{\begin{array}{l}{sinx-a≥0}\\{cosx-a≤0}\end{array}\right.$,利用正弦函数、余弦函数图象的性质进行解答即可.

解答 解:∵(sinx-α)(cosx-α)≤0,
∴,$\left\{\begin{array}{l}{sinx-a≤0}\\{cosx-a≥0}\end{array}\right.$或$\left\{\begin{array}{l}{sinx-a≥0}\\{cosx-a≤0}\end{array}\right.$,
∴sinx≤a≤cosx,或sinx≥a≥cosx;
当x∈[0,$\frac{π}{4}$]时sinx≤$\frac{\sqrt{2}}{2}$≤cosx;
当x∈[$\frac{π}{4}$,$\frac{3π}{4}$]时cosx≤$\frac{\sqrt{2}}{2}$≤sinx,
∴m的最大值是$\frac{3π}{4}$.
故选:C.

点评 本题考查了三角函数的最值.三角函数的最值其实就是指三角函数在定义域内的最大值和最小值,涉及到三角函数的定义域、值域、单调性和它们的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.随机变量ξ服从正态分布N(40,σ2),若P(ξ<30)=0.2,则P(30<ξ<50)=(  )
A.0.2B.0.4C.0.6D.0.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.二维空间中圆的一维测度(周长)l=2πr,二维测度(面积)S=πr2,观察发现S′=l;三维空间中球的二维测度(表面积)S=4πr2,三维测度(体积)V=$\frac{4}{3}$πr3,观察发现V′=S.则由四维空间中“超球”的三维测度V=8πr3,猜想其四维测度W=(  )
A.4πr4B.4πr2C.2πr4D.πr4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在平面直角坐标系中,以原点为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线C:ρsin2θ=8cosθ与直线l:$\left\{\begin{array}{l}x=2+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数)相交于P,Q两点,则|PQ|=$\frac{32}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知{an}的前n项和为Sn,且Sn+$\frac{1}{2}$an=1(n∈N+).
(1)求{an}的通项公式;
(2)设bn=log3(1-Sn+1),n∈N+,Tn=$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+…+$\frac{1}{{b}_{n}{b}_{n+1}}$,求使Tn>$\frac{100}{201}$成立的最小的正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知(x+1)3=a3x3+a2x2+a1x+a0,求a3+a2+a1+a0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知集合{(x,y)|x∈[0,3],y∈[-1,1]}
(1)若x,y∈z,则3x+2y-1≥0概率为多少?
(2)若x,y∈R,则3x+2y-1≥0概率为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax3-bx2+9x+2,若x=$\frac{1}{2}$是f(x)的一个极值点,且f(x)的图象在x=1处的切线与直线3x+y-1=0平行.
(1)求f(x)的解析式及单调区间
(2)若对任意的x∈[$\frac{1}{4}$,2]都有f(x)≥t2-2t-1成立,求函数g(t)=t2+t-2的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知复数z满足(z-1)i=-1,则z=(  )
A.1+iB.-1+iC.iD.-i

查看答案和解析>>

同步练习册答案