精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,角A、B、C所对的边长分别为a,b,c且满足csinA= acosC,则sinA+sinB的最大值是(
A.1
B.
C.3
D.

【答案】D
【解析】解:∵csinA= acosC,
∴由正弦定理可得sinCsinA= sinAcosC,
∴tanC=
即C= ,则A+B=
∴B= ﹣A,0<A<
∴sinA+sinB=sinA+sin( ﹣A)=sinA+ = sinA+ cos A= sin(A+ ),
∵0<A<
<A+
∴当A+ = 时,sinA+sinB取得最大值
故选:D.
【考点精析】掌握正弦定理的定义是解答本题的根本,需要知道正弦定理:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示的算法流程图中,输出S的值为(

A.32
B.42
C.52
D.63

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017四川宜宾二诊】已知函数.

(I)若,求函数的单调区间;(其中是自然对数的底数)

(II)设函数,当时,曲线有两个交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=xlnx,g(x)= ,直线l:y=(k﹣3)x﹣k+2
(1)函数f(x)在x=e处的切线与直线l平行,求实数k的值
(2)若至少存在一个x0∈[1,e]使f(x0)<g(x0)成立,求实数a的取值范围
(3)设k∈Z,当x>1时f(x)的图象恒在直线l的上方,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是等差数列,满足a1=3,a4=12,数列{bn}满足b1=4,b4=20,且{bn﹣an}为等比数列.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】Sn为数列的前n项和,已知an>0,an2+2an=4Sn﹣1.
(1)求{an}的通项公式;
(2)求{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017重庆二诊】已知函数,设关于的方程个不同的实数解,则的所有可能的值为(

A. 3 B. 1或3 C. 4或6 D. 3或4或6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本题满分14分如图,已知椭圆,其左右焦点为,过点的直线交椭圆两点,线段的中点为的中垂线与轴和轴分别交于两点,且构成等差数列.

1求椭圆的方程;

2的面积为为原点的面积为.试问:是否存在直线,使得?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A( +1,0),B(0,2).若直线l:y=k(x﹣1)+1与线段AB相交,则直线l倾斜角α的取值范围是(
A.[ ]
B.[0, ]
C.[0, ]∪[ ,π)
D.[ ,π)

查看答案和解析>>

同步练习册答案