精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面是平行四边形,,侧面底面分别为的中点,点在线段.

1)若的中点,求证:平面平面;

2)求证:平面;

3)若,求点到平面的距离.

【答案】1)证明详见解答;(2)证明详见解答;(3.

【解析】

1)由已知可得,进而有平面平面,即可证明结论;

2)根据已知可得平面,所以有,在底面中,可得,进而有,即可证明结论;

3)求出的面积,利用等体积法,即可求解.

1)底面是平行四边形,分别为的中点,

的中点,

平面平面平面

同理平面平面

平面平面

2)侧面底面,即

侧面底面平面

平面平面

底面是平行四边形,

平面

平面

3平面

是等边三角形,

设点到平面的距离为

所以点到平面的距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角极坐标系中,直线的参数方程为其中为参数,其中的倾斜角,且其中,以坐标原点为极点,轴的正半轴为极轴建立平面直角坐标系,曲线C1的极坐标方程,曲线C2的极坐标方程.

(1)C1C2的直角坐标方程;

(2)已知点P(-2,0)C1交于点,与C2交于AB两点,且,求的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我校开展的高二学工学农某天的活动安排中,有采茶,摘樱桃,摘草莓,锄草,栽树,喂奶牛共六项活动可供选择,每个班上午,下午各安排一项(不重复),且同一时间内每项活动都只允许一个班参加,则该天甲,乙两个班的活动安排方案的种数为:________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】基于移动网络技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,给人们带来新的出行体验,某共享单车运营公司的市场研究人员为了了解公司的经营状况,对公司最近6个月的市场占有率进行了统计,结果如下表:

月份

2018.11

2018.12

2019.01

2019.02

2019.03

2019.04

月份代码

1

2

3

4

5

6

11

13

16

15

20

21

(1)请用相关系数说明能否用线性回归模型拟合与月份代码之间的关系.如果能,请计算出关于的线性回归方程,如果不能,请说明理由;

(2)根据调研数据,公司决定再采购一批单车扩大市场,从成本1000元/辆的型车和800元/辆的型车中选购一种,两款单车使用寿命频数如下表:

车型 报废年限

1年

2年

3年

4年

总计

10

30

40

20

100

15

40

35

10

100

经测算,平均每辆单车每年能为公司带来500元的收入,不考虑除采购成本以外的其它成本,假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,以平均每辆单车所产生的利润的估计值为决策依据,如果你是公司负责人,会选择哪款车型?

参考数据:.

参考公式:相关系数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的单调递增区间;

(2)若,设是函数的零点.

i)证明:时存在唯一

ii)若,记,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】日,小刘从各个渠道融资万元,在某大学投资一个咖啡店,日正式开业,已知开业第一年运营成本为万元,由于工人工资不断增加及设备维修等,以后每年成本增加万元,若每年的销售额为万元,用数列表示前年的纯收入.(注:纯收入年的总收入年的总支出投资额)

1)试求年平均利润最大时的年份(年份取正整数)并求出最大值.

2)若前年的收入达到最大值时,小刘计划用前年总收入的对咖啡店进行重新装修,请问:小刘最早从哪一年对咖啡店进行重新装修(年份取整数)?并求小刘计划装修的费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,过抛物线C的焦点F作互相垂直的两条直线ABCD,与抛物线C分别相交于ABCD,点ACx轴上方.

1)若直线AB的倾斜角为,求的值;

2)设的面积之和为S,求S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)记,试判断函数的极值点的情况;

(Ⅱ)若有且仅有两个整数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型商场为迎接新年的到来,在自动扶梯C点的上方悬挂竖直高度为5米的广告牌DE.如图所示,广告牌底部点E正好为DC的中点,电梯AC的坡度.某人在扶梯上点P(异于点C)观察广告牌的视角.当人在A点时,观测到视角∠DAE的正切值为

1)求扶梯AC的长

2)当某人在扶梯上观察广告牌的视角θ最大时,求CP的长.

查看答案和解析>>

同步练习册答案