精英家教网 > 高中数学 > 题目详情
2.设f(x)=m-$\frac{4}{{3}^{x}+1}$,其中m为常数
(Ⅰ)若f(x)为奇函数,试确定实数m的值;
(Ⅱ)若不等式f(x)+m>0对一切x∈R恒成立,求实数m的取值范围.

分析 (Ⅰ)由f(x)为R上的奇函数,可得f(0)=0,解得m=2,再由奇函数的定义即可判断;
(Ⅱ)问题转化为m>$\frac{4}{{3}^{x}+1}$-2,根据函数的单调性求出m的范围即可.

解答 解:(Ⅰ)若f(x)为奇函数,即有f(0)=0,即m-$\frac{4}{{3}^{0}+1}$=0,解得m=2,
经检验f(-x)=-f(x),m=2符合题意;
(Ⅱ)由(Ⅰ)得:f(x)=2-$\frac{4}{{3}^{x}+1}$,
若不等式f(x)+m>0对一切x∈R恒成立,
即m>$\frac{4}{{3}^{x}+1}$-2,
当x→-∞时,$\frac{4}{{3}^{x}+1}$-2→2,
故m≥2.

点评 本题考查函数的奇偶性和单调性的判断和运用,考查不等式成立问题的解法,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.一个几何体的三视图如图所示(单位:cm),则该几何体的体积为$\frac{38}{3}π$cm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出边风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商),为了调查每天微信用户用微信的时间,就经销化妆品的微商在一广场随机采访男性、女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:
 微信控非微信控合计
男性262450
女性302050
合计5644100
(1)根据以上数据,能够有60%的把握认为“微信控”与“性别”有关?
(2)现从调查的女性用户中按分层抽样的方法选出5人,从这5人中随机抽取3人,赠送200元的护肤套装,求这3人中“微信控”的人数为2的概率.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参考数据:
 P(K2≥k0 0.50 0.400.25 0.05 0.025 0.010
 k0 0.455 0.708 1.321 3.840 5.024 6.635

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,△ABD是边长为2的正三角形,PC⊥底面ABCD,AB⊥BP,BC=$\frac{2\sqrt{3}}{3}$.
(1)求证:PA⊥BD;
(2)若PC=BC,求二面角A-BP-D的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}是各项均为正数的等比数列,a1=1,5(a1+a2)=a1+a2+a3+a4
(1)求{an}的通项公式及前n项和Sn
(2)设Tn=$\frac{{a}_{1}}{{S}_{1}{S}_{2}}$+$\frac{{a}_{2}}{{S}_{2}{S}_{3}}$+…+$\frac{{a}_{n}}{{S}_{n}{S}_{n+1}}$,求证:Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在2015年夏天,一个销售西瓜的个体户为了了解气温与西瓜销售之间的关系,随机统计了四天气温与当天的销售额,其数据如表:
气温(℃)32343840
销售额(元)421446497520
由表中数据得到线性回归方程$\stackrel{∧}{y}$=12x+$\stackrel{∧}{a}$,当气温为35℃时,预测销售额约为(  )
A.400元B.420元C.448元D.459元

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某地拟建造一座体育馆,其设计方案侧面的外轮廓线如图所示:曲线AB是以点E的圆心的圆的一部分,其中E(0,t)(0<t≤25),GF是圆的切线,且GF⊥AD,曲线BC是抛物线y=-ax2+50(a>0)的一部分,CD⊥AD,且CD恰好等于圆E的半径.
(1)若CD=30米,AD=24$\sqrt{5}$米,求t与a的值;
(2)若体育馆侧面的最大宽度DF不超过75米,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设m,n是两条不同的直线,α,β,γ是三个不同的平面.在下列命题中,正确的是①④(写出所有正确命题的序号)
①若m∥n,n∥α,则m∥α或m?α;
②若m∥α,n∥α,m?β,n?β,则α∥β;
③若α⊥γ,β⊥γ,则α∥β;
④若α∥β,β∥γ,m⊥α,则m⊥γ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ex-ax-1,(a为实数),g(x)=lnx-x
(1)讨论函数f(x)的单调区间;
(2)求函数g(x)的极值;
(3)求证:lnx<x<ex(x>0)

查看答案和解析>>

同步练习册答案