精英家教网 > 高中数学 > 题目详情
13.在区间(1,7)上任取一个数,这个数在区间(5,8)上的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

分析 根据几何概型的计算公式,利用区间长度的比值计算概率即可.

解答 解:根据题意,本题是一个几何概型的应用问题,
∴从区间(1,7)上任取一个数,这个数在区间(5,8)上的概率为
P=$\frac{7-5}{7-1}$=$\frac{1}{3}$.
故选:C.

点评 本题考查了几何概型的计算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.设$a,b,c∈({0,\frac{π}{2}})$,且满足cosa=a,sin(cosb)=b,cos(sinc)=c,则a,b,c的大小关系为b<a<c.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1-x),则f(2017.5)=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点M(m,n)是圆x2+y2=2内的一点,则该圆上的点到直线mx+ny=2的最大距离和最小距离之和为(  )
A.$2\sqrt{2}$B.$\frac{4}{{\sqrt{{m^2}+{n^2}}}}$C.$\frac{2}{{\sqrt{{m^2}+{n^2}}}}+\sqrt{2}$D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f (x)=lnx-mx+m.
(1)若f (x)≤0在x∈(0,+∞)上恒成立,求实数m的取值范围;
(2)在(1)的条件下,对任意的0<a<b,求证:$\frac{f(b)-f(a)}{b-a}<\frac{1}{a(a+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若函数f(x)=x(x-c)2在x=2处有极大值,且对于任意x∈[5,8],f(x)-m≤0恒成立,则实数m的取值范围为[32,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.抛物线x=-ay2(a>0)的准线方程为$x=\frac{1}{4a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设a∈R,若函数y=eax+2x,x∈R有大于零的极值点,则(  )
A.a<-2B.a>-2C.a>-$\frac{1}{2}$D.a<-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=lg\frac{kx-1}{x-1}(k∈R)$.
(1)当k=0时,求函数f(x)的值域;
(2)当k>0时,求函数f(x)的定义域;
(3)若函数f(x)在区间[10,+∞)上是单调增函数,求实数k的取值范围.

查看答案和解析>>

同步练习册答案