精英家教网 > 高中数学 > 题目详情
1.已知点M(m,n)是圆x2+y2=2内的一点,则该圆上的点到直线mx+ny=2的最大距离和最小距离之和为(  )
A.$2\sqrt{2}$B.$\frac{4}{{\sqrt{{m^2}+{n^2}}}}$C.$\frac{2}{{\sqrt{{m^2}+{n^2}}}}+\sqrt{2}$D.不确定

分析 由题意,圆心到直线的距离d=$\frac{2}{\sqrt{{m}^{2}+{n}^{2}}}$>$\sqrt{2}$,直线与圆相离,即可求出该圆上的点到直线mx+ny=2的最大距离和最小距离之和.

解答 解:由题意,圆心到直线的距离d=$\frac{2}{\sqrt{{m}^{2}+{n}^{2}}}$>$\sqrt{2}$,直线与圆相离,
∴该圆上的点到直线mx+ny=2的最大距离和最小距离之和为$\frac{4}{\sqrt{{m}^{2}+{n}^{2}}}$,
故选B.

点评 本题考查直线与圆的位置关系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.由1,2,3这三个数字组成的没有重复数字的三位自然数共有(  )
A.6个B.8个C.12个D.15个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图:
(1)如表是年龄的频数分布表,求a,b的值;
区间[25,30)[30,35)[35,40)[40,45)[45,50]
人数5050a150b
(2)根据频率分布直方图估计志愿者年龄的平均数和中位数;
(3)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的分别抽取多少人?
(4)在(3)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线的顶点在原点,它的准线过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一个焦点,抛物线与双曲线交点为$P({\frac{3}{2},\sqrt{6}})$,求抛物线方程和双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算机随机产生0到9之间取整数的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中,再以三个随机数为一组,代表三次投篮的结果,经随机模拟产生了如下20组随机数:
807  966  191  925  271  932  812  458  569  683
489  257  394  027  556  488  730  113  537  741
根据以上数据,估计该运动员三次投篮恰好有两次命中的概率为(  )
A.0.20B.0.25C.0.30D.0.35

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}满足an+1=an-2anan+1,an≠0且a1=1.
(1)求数列{an}的通项公式;  
(2)令${b_n}={(-1)^{n+1}}n{a_n}{a_{n+1}}$,求数列{bn}的前2n项和T2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在区间(1,7)上任取一个数,这个数在区间(5,8)上的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.△ABC中,A(0,1),AB边上的高CD所在直线的方程为x+2y-4=0,AC边上的中线BE所在直线的方程为2x+y-3=0.
(1)求直线AB的方程,并把它化为一般式;
(2)求直线BC的方程,并把它化为一般式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列各小题中,p是q的充分不必要条件的是(  )
①p:m<-2或m>6,q:y=x2+mx+m+3有两个零点;
②$p:\frac{{f({-x})}}{f(x)}=1$,q:y=f(x)是偶函数;
③p:cosα=cosβ,q:tanα=tanβ;
④p:A∩B=A,q:(∁UB)⊆(∁UA)
A.①②B.②③C.③④D.①④

查看答案和解析>>

同步练习册答案