精英家教网 > 高中数学 > 题目详情
15.已知集合A={(x,y)||x|+|y|≤1},B={(x,y)|x2+y2≤1},C={(x,y)||x|≤1,|y|≤1},判断A、B、C之间的包含关系.

分析 作出集合A,B,C的几何意义,从而判断三个集合的关系即可.

解答 解:作出集合A,B,C的几何意义如下,

红色正方形内的所有的点是A,
绿色圆内的所有的点是B,
蓝色正方形内的所有的点是C,
故A?B?C.

点评 本题考查了集合的几何意义的应用及集合的关系的判断,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.某研究小组为了研究中学生的身体发育情况,在某学校随机抽出20名15至16周岁的男生,将他们的身高和体重制成2×2的列联表,根据列联表的数据,判断该学校15至16周岁的男生的身高和体重之间在犯错误概率不超过0.025的前提下有关系.
超重不超重总计
偏高115
不偏高31215
总计71220
附:独立性检验临界值表
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828
k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若sin(π+α)+sin(-α)=-m,则sin(3π+α)=-$\frac{m}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.抛物线C:y2=2px(p>0)横坐标为4的点到焦点距离为5.
(1)求C的方程;
(2)设直线y=kx+b与C交于A(x1,y1),B(x2,y2)且|x1-x2|=$\frac{a}{k}$,(a>0,a为常数),证明:a2k2=16(1-kb)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=loga$\frac{2+x}{2-x}$(0<a<1),试判断f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.计算:
(1)2log210+log20.04;
(2)$\frac{lg3+2lg2-1}{lg1.2}$;
(3)$\sqrt{l{g}^{2}3-lg9+1}$;
(4)$\frac{1}{3}$log${\;}_{\frac{1}{6}}$8+2log${\;}_{\frac{1}{6}}$$\sqrt{3}$;
(5)log6$\frac{1}{12}$-2log63+$\frac{1}{3}$log627.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知x∈R,y>0,集合A={x2+x+1,-x,-x-1},B={-y,-$\frac{y}{2}$,y+1},若A=B,则x2+y2的值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如果角α与角x+45°的终边重合,角β与角x-45°的终边重合,试判断α-β的终边的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求值:|1+lg0.001|+lg6-lg0.02-lg3.

查看答案和解析>>

同步练习册答案