精英家教网 > 高中数学 > 题目详情
9.已知双曲线C的焦点位于x轴上,顶点为A1(-3,0),A2(3,0),且该双曲线的一条渐近线为y=$\sqrt{2}$x.
(1)求双曲线C的标准方程;
(2)在曲线C上有一点M它到左焦点F1的距离为2,求M到右焦点F2的距离.

分析 (1)求出a,b,可得双曲线C的标准方程;
(2)利用双曲线的定义,即可求M到右焦点F2的距离.

解答 解:(1)由题意,a=3,$\frac{b}{a}$=$\sqrt{2}$,∴b=3$\sqrt{2}$,
∴双曲线C的标准方程为$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{18}$=1;
(2)由题意,|MF2|-|MF1|=6,
∴M到右焦点F2的距离为8.

点评 本题考查双曲线的方程与定义,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.某跨国饮料公司对全世界所有人均GDP(即人均纯收入)在0.5-8千美元的地区销售,该公司在对M饮料的销售情况的调查中发现:人均GDP处在中等的地区对该饮料的销售量最多,然后向两边递减.
(1)下列几个模拟函数中(x表示人均GDP,单位:千美元;y表示年人均M饮料的销量,单位:升),用哪个来描述人均饮料销量与地区的人均GDP的关系更合适?说明理由;
(A)f(x)=ax2+bx
(B)f(x)=logax+b
(C)f(x)=ax+b
(2)若人均GDP为2千美元时,年人均M饮料的销量为6升;人均GDP为4千美元时,年人均M饮料的销量为8升;把你所选的模拟函数求出来;
(3)因为M饮料在N国被检测出杀虫剂的含量超标,受此事件影响,M饮料在人均GDP不高于3千美元的地区销量下降5%,不低于5千美元的地区销量下降5%,其他地区的销量下降10%,根据(2)所求出的模拟函数,求在0.5-8千美元的地区中,年人均M饮料的销量最多为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设坐标平面上全部向量集合为A,已知由A到A的映射f由f(x)=x-2(x•$\overrightarrow{a}$)$\overrightarrow{a}$确定,其中x∈A,$\overrightarrow{a}$=(cosθ,sinθ),θ∈R.
(1)当θ的取值范围变化时,f[f(x)]是否变化?试说明你的理由;
(2)若|$\overrightarrow{m}$|=$\sqrt{5}$,|$\overrightarrow{n}$|=$\frac{\sqrt{5}}{2}$,f[f($\overrightarrow{m}$+2$\overrightarrow{n}$)]与f(f(2$\overrightarrow{m}$-$\overrightarrow{n}$)]垂直,求$\overrightarrow{m}$与$\overrightarrow{n}$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,已知平行六面体ABCD-A′B′C′D′,化简下列各表达式,并在图中标出化简结果的向量:
(1)$\overrightarrow{AB}$+$\overrightarrow{BC}$;
(2)$\overrightarrow{AB}$+$\overrightarrow{AD}$+$\overrightarrow{AA′}$;
(3)$\overrightarrow{AB}$+$\overrightarrow{AD}$+$\frac{1}{2}$$\overrightarrow{CC′}$;
(4)$\frac{1}{3}$($\overrightarrow{AB}$+$\overrightarrow{AD}$+$\overrightarrow{AA′}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若f′(x0)存在,则$\underset{lim}{△x→0}$$\frac{f({x}_{0}+△x)-f({x}_{0}-△x)}{△x}$=2f'(x0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn,且a1=2,an+1=Sn+2,n∈N*
(1)求数列{an}的通项公式;
(2)若a1,a2分别是等差数列{bn}的第2项和第4项,数列{bn}的前n项和为Tn,求证:1≤$\sum_{i=1}^{n}$$\frac{1}{{T}_{i}}$<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和为Sn,且a1=2,an+1=Sn+2,n∈N*
(1)求数列{an}的通项公式;
(2)若a1,a2分别是等差数列{bn}的第2项和第4项,数列{bn}的前n项和为Tn,求$\sum_{i=1}^{n}$$\frac{1}{{T}_{i}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若某几何体的三视图如图所示,则该几何体的表面积为(  )
A.4+$\sqrt{7}$B.8+$\sqrt{7}$C.4+$\sqrt{3}$+$\sqrt{7}$D.8+$\sqrt{3}$+$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若指数函数f(x)的图象经过点(1,2),则f(-1)=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案