精英家教网 > 高中数学 > 题目详情
4.若f′(x0)存在,则$\underset{lim}{△x→0}$$\frac{f({x}_{0}+△x)-f({x}_{0}-△x)}{△x}$=2f'(x0).

分析 先根据导数定义,表示函数f(x)在x0的导数f'(x0)=$\frac{1}{2}$$\underset{lim}{△x→0}$$\frac{f({x}_{0}+△x)-f({x}_{0}-△x)}{△x}$,进而求得原式的值.

解答 解:根据导数的定义,函数f(x)在x0的导数为:
f'(x0)=$\underset{lim}{△x→0}$$\frac{f({x}_{0}+△x)-f({x}_{0}-△x)}{({x}_{0}+△x)-({x}_{0}-△x)}$
=$\underset{lim}{△x→0}$$\frac{f({x}_{0}+△x)-f({x}_{0}-△x)}{2△x}$
=$\frac{1}{2}$•$\underset{lim}{△x→0}$$\frac{f({x}_{0}+△x)-f({x}_{0}-△x)}{△x}$,
所以,$\underset{lim}{△x→0}$$\frac{f({x}_{0}+△x)-f({x}_{0}-△x)}{△x}$=2f'(x0),
即原式=2f'(x0),
故答案为:2f'(x0).

点评 本题主要考查了极限及其运算,涉及导数的定义和应用,合理的恒等变形是解决本题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.函数y=$\sqrt{{{log}_2}(4x-3)}$的定义域是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知四面体ABCD的各面均是边长为1的正三角形,设E,G分别为△BCD,△ABC的中心,分别以$\overrightarrow{AB}$,$\overrightarrow{GC}$,$\overrightarrow{GD}$方向上的单位向量构成一个基底$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$,则向量$\overrightarrow{AE}$的坐标是($\frac{2}{3}$,$\frac{2\sqrt{3}}{9}$,$\frac{\sqrt{6}}{9}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{a}{2}$+$\frac{2}{{2}^{x}+1}$是奇函数.
(1)求a的值;
(2)判断f(x)的单调性,并用定义加以证明;
(3)求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在锐角△ABC中,∠A=60°,BC=2,求△ABC面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知双曲线C的焦点位于x轴上,顶点为A1(-3,0),A2(3,0),且该双曲线的一条渐近线为y=$\sqrt{2}$x.
(1)求双曲线C的标准方程;
(2)在曲线C上有一点M它到左焦点F1的距离为2,求M到右焦点F2的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数y=lgx的定义域为集合A,集合B={0,1,2},则A∩B=(  )
A.(0,+∞)B.(0,2]C.{0,1,2}D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知扇形AOB的圆心角∠AOB=$\frac{π}{6}$,半径OA=1,在$\widehat{AB}$上有一个动点M,过M作矩形MNPQ,如图,设∠AOM=θ,记矩形MNPQ的面积为S.
(1)求函数S=f(θ)的解析式;
(2)当θ为何值时,S取得最大值?最大值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.当x>1时,不等式$\frac{1+lnx}{x-1}$>$\frac{k}{x}$恒成立,其中k∈N*,则k的最大值是3.

查看答案和解析>>

同步练习册答案