精英家教网 > 高中数学 > 题目详情
17.函数y=$\sqrt{{{log}_2}(4x-3)}$的定义域是[1,+∞).

分析 由log2(4x-3)≥0,利用对数函数的单调性即可得出.

解答 解:由log2(4x-3)≥0,
∴4x-3≥1,
解得x≥1.
∴函数y=$\sqrt{{{log}_2}(4x-3)}$的定义域是[1,+∞).
故答案为:[1,+∞).

点评 本题考查了对数函数的单调性、根式函数的定义域,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.设复数z满足-iz=(3+2i)(1-i)(其中i为虚数单位),则z=1+5i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某校高一(2)班共有60名同学参加期末考试,现将其数学学科成绩(均为整数)分成六个分数段[40,50),[50,60),…,[90,100],画出如如图所示的部分频率分布直方图,请观察图形信息,回答下列问题:
(1)求70~80分数段的学生人数;
(2)估计这次考试中该学科的优分率(80分及以上为优分)、中位数、平均值;
(3)现根据本次考试分数分成下列六段(从低分段到高分段依次为第一组、第二组、…、第六组)为提高本班数学整体成绩,决定组与组之间进行帮扶学习.若选出的两组分数之差大于30分(以分数段为依据,不以具体学生分数为依据),则称这两组为“最佳组合”,试求选出的两组为“最佳组合”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列关系式中表述正确的是(  )
A.0∈{(0,0)}B.0∈∅C.0∈ND.{0}∈{x|x2=0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知向量$\overrightarrow{OA}$、$\overrightarrow{OB}$(O、A、B三点不共线),求作下列向量:
(1)$\overrightarrow{OM}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{OB}$);
(2)$\overrightarrow{ON}$=$\frac{1}{2}$($\overrightarrow{OA}$-$\overrightarrow{OB}$);
(3)$\overrightarrow{OG}$=3$\overrightarrow{OA}$+2$\overrightarrow{OB}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某跨国饮料公司对全世界所有人均GDP(即人均纯收入)在0.5-8千美元的地区销售,该公司在对M饮料的销售情况的调查中发现:人均GDP处在中等的地区对该饮料的销售量最多,然后向两边递减.
(1)下列几个模拟函数中(x表示人均GDP,单位:千美元;y表示年人均M饮料的销量,单位:升),用哪个来描述人均饮料销量与地区的人均GDP的关系更合适?说明理由;
(A)f(x)=ax2+bx
(B)f(x)=logax+b
(C)f(x)=ax+b
(2)若人均GDP为2千美元时,年人均M饮料的销量为6升;人均GDP为4千美元时,年人均M饮料的销量为8升;把你所选的模拟函数求出来;
(3)因为M饮料在N国被检测出杀虫剂的含量超标,受此事件影响,M饮料在人均GDP不高于3千美元的地区销量下降5%,不低于5千美元的地区销量下降5%,其他地区的销量下降10%,根据(2)所求出的模拟函数,求在0.5-8千美元的地区中,年人均M饮料的销量最多为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知tanα=2,则tan2α的值为-$\frac{3}{4}$,cos2α=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数$f(x)={log_2}(1+a•{2^x}+{4^x})$,其中a为常数
(1)当f(2)=f(1)+2时,求a的值;
(2)当x∈[1,+∞)时,关于x的不等式f(x)≥x-1恒成立,试求a的取值范围;
(3)若a∈R,试求函数y=f(x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若f′(x0)存在,则$\underset{lim}{△x→0}$$\frac{f({x}_{0}+△x)-f({x}_{0}-△x)}{△x}$=2f'(x0).

查看答案和解析>>

同步练习册答案