精英家教网 > 高中数学 > 题目详情
13.在正三棱柱ABC-A1B1C1中,AB=1,BB1=2,求:
(1)异面直线B1C1与A1C所成角的大小;
(2)四棱锥A1-B1BCC1的体积.

分析 (1)由B1C1∥BC,知∠BCA1是异面直线B1C1与A1C所成角,由此能求出异面直线B1C1与A1C所成角大小.
(2)四棱锥A1-B1BCC1的体积V=${V}_{ABC-{A}_{1}{B}_{1}{C}_{1}}-{V}_{{A}_{1}-ABC}$,由此能求出结果.

解答 解:(1)∵正三棱柱ABC-A1B1C1,∴B1C1∥BC,
∴∠BCA1是异面直线B1C1与A1C所成角,…(2分)
在△BCA1中,BC=1,${A}_{1}B=\sqrt{5}$,${A}_{1}C=\sqrt{5}$,
∴cos∠BCA1=$\frac{B{C}^{2}+C{{A}_{1}}^{2}-B{{A}_{1}}^{2}}{2BC•C{A}_{1}}$=$\frac{\sqrt{5}}{10}$,…(5分)
∴$∠BC{A_1}=arccos\frac{{\sqrt{5}}}{10}$,
∴异面直线B1C1与A1C所成角大小为arccos$\frac{\sqrt{5}}{10}$.…(7分)
(2)∵正三棱柱ABC-A1B1C1中,AB=1,BB1=2,
∴${V}_{ABC-{A}_{1}{B}_{1}{C}_{1}}$=S△ABC•AA1=$\frac{\sqrt{3}}{2}$,
${V}_{{A}_{1}-ABC}=\frac{1}{3}{S}_{△ABC}•A{A}_{1}=\frac{\sqrt{3}}{6}$,
∴四棱锥A1-B1BCC1的体积V=${V}_{ABC-{A}_{1}{B}_{1}{C}_{1}}-{V}_{{A}_{1}-ABC}$=$\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{6}=\frac{\sqrt{3}}{3}$.…(14分)

点评 本题考查异面直线所成角的大小的求法,考查四棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.若抛物线y2=6x上的点M到焦点的距离为10,则M到y轴的距离是$\frac{17}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.不等式$\frac{x+1}{x+2}<0$的解集为(-2,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=lg(x+m)(m∈R);
(1)当m=2时,解不等式$f(\frac{1}{x})>1$;
(2)若f(0)=1,且$f(x)={(\frac{1}{{\sqrt{2}}})^x}+λ$在闭区间[2,3]上有实数解,求实数λ的范围;
(3)如果函数f(x)的图象过点(98,2),且不等式f[cos(2nx)]<lg2对任意n∈N均成立,求实数x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若(2x2+$\frac{1}{x}$)nn∈N*的二项展开式中的第9项是常数项,则n=12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.数列{an}是首项为1,公差为2的等差数列,Sn是它前n项和,则$\lim_{n→∞}\frac{S_n}{a_n^2}$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在空间,α表示平面,m,n表示二条直线,则下列命题中错误的是(  )
A.若m∥α,m、n不平行,则n与α不平行B.若m∥α,m、n不垂直,则n与α不垂直
C.若m⊥α,m、n不平行,则n与α不垂直D.若m⊥α,m、n不垂直,则n与α不平行

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在无穷等比数列{an}中,$\lim_{n→∞}({a_1}+{a_2}+…+{a_n})=\frac{1}{2}$,则a1的取值范围是(  )
A.$({0,\frac{1}{2}})$B.$({\frac{1}{2},1})$C.(0,1)D.$({0,\frac{1}{2}})∪$$({\frac{1}{2},1})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.方程4x-4•2x-5=0的解是(  )
A.x=0或x=log25B.x=-1或x=5C.x=log25D.x=0

查看答案和解析>>

同步练习册答案