【题目】今有一个“数列过滤器”,它会将进入的无穷非减正整数数列删去某些项,并将剩下的项按原来的位置排好形成一个新的无穷非减正整数数列,每次“过滤”会删去数列中除以
余数为
的项,将这样的操作记为
操作.设数列
是无穷非减正整数数列.
(1)若
,
进行
操作后得到
,设
前
项和为![]()
①求
.
②是否存在
,使得
成等差?若存在,求出所有的
;若不存在,说明理由.
(2)若
,对
进行
与
操作得到
,再将
中下标除以4余数为0,1的项删掉最终得到
证明:每个大于1的奇平方数都是
中相邻两项的和.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,直线
过原点且倾斜角为
.以坐标原点
为极点,
轴正半轴为极轴建立坐标系,曲线
的极坐标方程为
.在平面直角坐标系
中,曲线
与曲线
关于直线
对称.
(Ⅰ)求曲线
的极坐标方程;
(Ⅱ)若直线
过原点且倾斜角为
,设直线
与曲线
相交于
,
两点,直线
与曲线
相交于
,
两点,当
变化时,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
的极坐标方程是
,以极点为原点,极轴为
轴的正半轴,建立平面直角坐标系,直线
过点
,倾斜角为
.
(1)求曲线
的直角坐标方程与直线l的参数方程;
(2)设直线
与曲线
交于
,
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学研究曲线
的性质,得到如下结论:①
的取值范围是
;②曲线
是轴对称图形;③曲线
上的点到坐标原点的距离的最小值为
. 其中正确的结论序号为( )
A.①②B.①③C.②③D.①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了检验训练情况,武警某支队于近期举办了一场展示活动,其中男队员12人,女队员18人,测试结果如茎叶图所示(单位:分).若成绩不低于175分者授予“优秀警员”称号,其他队员则给予“优秀陪练员”称号.
(1)若用分层抽样的方法从“优秀警员”和“优秀陪练员”中共提取10人,然后再从这10人中选4人,那么至少有1人是“优秀警员”的概率是多少?
(2)若所有“优秀警员”中选3名代表,用
表示所选女“优秀警员”的人数,试求
的分布列和数学期望.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设事件A表示“关于
的一元二次方程
有实根”,其中
,
为实常数.
(Ⅰ)若
为区间[0,5]上的整数值随机数,
为区间[0,2]上的整数值随机数,求事件A发生的概率;
(Ⅱ)若
为区间[0,5]上的均匀随机数,
为区间[0,2]上的均匀随机数,求事件A发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,其图象关于直线
对称,为了得到函数
的图象,只需将函数
的图象上的所有点( )
A.先向左平移
个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变
B.先向右平移
个单位长度,再把所得各点横坐标缩短为原来的
,纵坐标保持不变
C.先向右平移
个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变
D.先向左平移
个单位长度,再把所得各点横坐标缩短为原来的
,纵坐标保持不变
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
:
的焦点
为圆
的圆心.
(1)求抛物线
的标准方程;
(2)若斜率
的直线
过抛物线的焦点
与抛物线相交于
两点,求弦长
.
【答案】(1)
;(2)8.
【解析】试题分析:(1)先求圆心得焦点,根据焦点得抛物线方程(2)先根据点斜式得直线方程,与抛物线联立方程组,利用韦达定理以及弦长公式得弦长
.
试题解析:(1)圆的标准方程为
,圆心坐标为
,
即焦点坐标为
,得到抛物线
的方程: ![]()
(2)直线
:
,联立
,得到![]()
弦长
![]()
【题型】解答题
【结束】
19
【题目】已知函数
在点
处的切线方程为
.
(1)求函数
的解析式;
(2)求函数
的单调区间和极值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com