分析 化简g(x)=x+$\frac{1}{x}$-1,从而由基本不等式可判断g(x)在x=1处取得最小值1;从而可知f(x)在x=1处取得最小值1,再由二次函数的顶点式写出f(x)=(x-1)2+1,从而求函数的最大值.
解答 解:∵g(x)=$\frac{{x}^{2}-x+1}{x}$=x+$\frac{1}{x}$-1≥2-1=1;
(当且仅当x=$\frac{1}{x}$,即x=1时,等号成立)
∴g(x)在x=1处取得最小值1;
又∵f(x)与g(x)是定义在区间[$\frac{1}{2}$,2]上的“兄弟函数”,
∴f(x)在x=1处取得最小值1;
∴f(x)=x2+px+q=(x-1)2+1;
又∵|$\frac{1}{2}$-1|<|2-1|,
∴fmax(x)=f(2)=1+1=2;
故答案为:2.
点评 本题考查了学生对新定义的接受与转化能力,同时考查了基本不等式的应用及二次函数的性质应用,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 中心角为30°的扇形 | B. | 直角三角形 | ||
| C. | 钝角三角形 | D. | 锐角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com